

Plioviverrops faventinus reloaded: the last survivor of a successful genus

Cecilia Loddi, Joan Madurell-Malapeira & Saverio Bartolini-Lucenti*

- C. Loddi, Dipartimento di Scienze della Terra, Paleo[Fab]Lab, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy; cecilia.loddi@unifi.it
 J. Madurell-Malapeira, Dipartimento di Scienze della Terra, Paleo[Fab]Lab, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy; joan.madurellmalapeira@unifi.it
- S. Bartolini-Lucenti, Dipartimento di Scienze della Terra, Paleo[Fab]Lab, Università degli Studi di Firenze, Via La Pira 4, I-50121 Firenze, Italy; Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; saverio.bartolinilucenti@unifi.it *corresponding author

KEY WORDS - Systematics, palaeoecology, ecomorphology, early hyaenids, Miocene.

ABSTRACT - The taxonomic and systematic conundrum of Middle to Late Miocene small-sized hyaenids includes several taxa generally ascribed to the genera Protictitherium and Plioviverrops. Especially the latter was often related to the extant aardwolf, Proteles cristatus, although a recent study suggests the new genus Gansuyaena as being the plausible ancestor of the African Proteles. In general terms, few studies have concentrated specifically on these small hyaenids, and little is known with regard to their systematics and phylogenetic relationships. Rather, they were ecomorphologically divided in civet-like and mongoose-like hyaenids based on their morphological and metric features. Often overlooked in literature, Plioviverrops faventinus was originally described by Danilo Torre, who was the first to recognise the peculiarity of the most recently established species of the genus Plioviverrops. In the present paper, we revise the sample from the type locality of Cava Monticino (Brisighella, Ravenna, Italy) clarifying the affinities and differences with other species of Plioviverrops as well as of Protictitherium and Gansuyaena. Moreover, we focus on dentognathic features to test the ecological preferences of P. faventinus and other small-sized hyaenids, compared to a sample of extant Herpestidae and Viverridae. Our ecological results suggest the marked hypocarnivorous/invertebrivorous specialisation of P. faventinus similar to some extant herpestids.

INTRODUCTION

The family Hyaenidae is nowadays represented by only four species living in sub-Saharan Africa and southwestern Asia: Crocuta crocuta Erxleben, 1777, Hyaena hyaena Linnaeus, 1758, Parahyaena brunnea (Thunberg, 1820) and Proteles cristatus (Sparrman, 1783). All these species, except for the aardwolf (Pt. cristatus), are bone-cracker carnivores specialised in consuming meat and bones (Nowak, 2005), displaying several craniomandibular characteristics adapted to this diet such as buccolingual wide cheek teeth and a strong cranial and mandibular muscular structure (see hyaenid ecomorphotypes in Werdelin & Solounias, 1991, 1996). During most of the Miocene and specially during the second half of this epoch, hyaenids exhibited a huge ecological and specific diversity occupying several ecological niches todays restricted to canids and mustelids (Wang et al., 2008; Tseng & Wang, 2011). At least 70 species of extinct hyaenas are known today, and due to the impossibility to reconstruct their exact phylogeny for the sometimes-scarce fossil record, Werdelin & Solounias (1991, 1996) classified these taxa using their ecological role and their morphology. Six ecomorphotypes were identified (Werdelin & Solounias, 1996): civet-like, mongoose-like, jackal- and wolf-like meat and boneeaters, cursorial meat and bone-eaters, transitional bonecrackers and fully developed bone-crackers (groups 1 to 6, respectively). Though these groups well represent the variability of adaptations in the Miocene fossil hyaenas, it is not always easy to allocate the various fossil species to one group or to another (see Werdelin & Solounias, 1991). Recently even this reasonable scheme has proven its plausible limits (Coca-Ortega & Pérez-Clarós, 2019;

Pérez-Clarós & Coca-Ortega, 2020). Within the group of most basal hyaenas, Plioviverrops Kretzoi, 1938 was one of the most successful genera with a fossil record which encompassed most of the Miocene and beyond (Turner et al., 2008). This genus is defined sometimes as mongooselike and sometimes as civet-like hyaenas. There are at least four species of *Plioviverrops* characterised by small dimensions (i.e., a body-mass range between 2 and 7 kg) and ecological adaptations somewhat in between those of modern insectivores and hypocarnivores. Despite the longspanning time range from the Early Miocene to the Early Pliocene (MN4-MN15; Turner et al., 2008), *Plioviverrops* spp. are mostly represented and diversified in European Tortonian-Messinian faunal assemblages (MN11-MN13; following Hilgen et al., 2012), with remains found in France, Spain, Italy, Greece and Bulgaria, showing very effective ecological adaptations. Furthermore, this taxon is one of the few Hyaenidae genera that survived the Mio-Pliocene boundary, when a drastic reduction on hyaenid ecological diversity and relative abundance took place, possible due to various causes such as climate changes and the arrival into Eurasia and Africa of canids from North America (Sotnikova & Rook, 2010; Tseng & Wang, 2011).

Systematic and taxonomic tangle of Plioviverrops

Plioviverrops is among the oldest taxa of Hyaenidae to appear, together with Protictitherium and Tungurictis, in the late Early Miocene (MN4-MN5, ca. 17 Ma; see Hilgen et al., 2012 and references therein) of Europe (for Protictitherium and Plioviverrops) and East Asia (for Tungurictis) (Werdelin & Solounias, 1991; Turner et al., 2008; Wang et al., 2020). Despite their relative primitiveness, these taxa are all characterised by showing a high specific diversity (Werdelin & Solounias, 1991;

ISSN 0375-7633 doi:10.4435/BSPI.2025.06

Reference	ce Family other ranks <i>gervaisi</i>		gaudryi	orbignyi	guerini	faventinus	
			MN4-5	MN7-8	MN7-12 ->MN14	MN12	MN13-MN14
Gaudry & Lartet, 1856	Viverridae				Viverra orbignyi		
Trouessard, 1897	Viverridae	Ictitheriinae			Ictitherium		
Dietrich, 1927	Viverridae				Ictitherium		
Kretzoi, 1938	Hyaenidae sensu lato = Viverridae	Ictitheriinae			"Ictitherium" d'orbignyi but Plioviverrops		
De Villalta-Comella & Crusafont-Pairó, 1943	Viverridae		-			Herpestes cf. crassus	-
De Villalta-Comella & Crusafont-Pairó, 1948	Viverridae		-			Herpestes guerini (Piera+Concud)	-
Viret, 1951	Viverridae		-		"Ictitherium"		-
Mein, 1958	pars Viverridae & pars Hyaenidae		pars <i>J. grivensis</i> & pars <i>Progenetta</i> cf. praecurrens				
Thenius, 1966					Ictitherium		
de Beamont, 1967	Hyaenidae						
Crusafont-Pairó & Petter, 1969			-			Plioviverrops (?) (Los Mansuetos)	-
de Beamont, 1969	Hyaenidae		-		Plioviverrops		-
de Beamont & Mein, 1972	?Hyaenidae		Plioviverrops (Protoviverrops) gervaisi (Vieux-Collonges)	Plioviverrops (Mesoviverrops) gaudryi (La Grive de Saint-Alban)	Plioviverrops (Plioviverrops)	Plioviverrops (Mesoviverrops)	-
Schmidt-Kittler, 1976	Hyaenidae		Plioviverrops (Protoviverrops) (related to Protictitherium intermedium)		Plioviverrops (Plioviverrops)		
Petter, 1976	Hyaenidae		?Plioviverrops (Protoviverrops)		Plioviverrops		
Torre, 1989	Hyaenidae		Plioviverrops	Plioviverrops	Plioviverrops	Plioviverrops	Plioviverrops
Semenov, 1989	Viverridae	Ictitheriinae	Plioviverrops	Plioviverrops	Plioviverrops	Plioviverrops	
Hunt & Solounias, 1991	Hyaenidae				Plioviverrops		
Werdelin & Solounias, 1991	Hyaenidae		Plioviverrops	Plioviverrops	Plioviverrops	Plioviverrops	
de Bonis, 1994	Hyaenidae						
Ginsburg, 1999	Hyaenidae	Ictitheriinae	Plioviverrops	Plioviverrops	Plioviverrops	Plioviverrops	Plioviverrops
Turner et al., 2007	Hyaenidae		Plioviverrops (maybe =gaudryi)	Plioviverrops (maybe =gervaisi)	Plioviverrops	Plioviverrops	'Plioviverrops'
Semenov, 2008	Viverridae	Ictitheriinae					
Sen & Sarac, 2017	Hyaenidae				Plioviverrops		
Spassov et al., 2019	Viverridae	Ictitheriinae			Plioviverrops		
Galiano et al., 2022	Hyaenidae	Protelinae	Protoviverrops (not in Protelinae) and including Protictitherium intermedium as Protoviverrops intermedium	Mesoviverrops	Plioviverrops	Gansuyaena	Plioviverrops

Turner et al., 2008; Wang et al., 2020). Their taxonomy and phylogenetic affinities have been a hotly debated topic among scholars nearly since their description (de Beaumont & Mein, 1972; Werdelin & Solounias, 1991; Turner et al., 2008; Galiano et al., 2022).

Starting with the authorship of the generic name, the first to propose it was Kretzoi (1938) for *Viverra orbignyi* Gaudry & Lartet, 1856 from Pikermi (Greece; Gaudry, 1862). In this work, Kretzoi included the taxon "*Ictitherium*" *d'orbignyi* (Kretzoi, 1938, p. 114) in Ictitheriinae Trouessart, 1897, one of the two phyletic groups of his "Hyaenidae sensu lato" ("Die in diesem weiteren Sinn aufgefaßten Hyaeniden"; cf. Kretzoi, 1938, p. 112). On the one side, he maintained plausible the attribution to Viverridae (evidently included in this "Hyaenidae sensu lato") and, on the other, considering the impossibility of associating the morphological features of the Greek specimens to those of *Ictitherium* Wagner, 1848 or with those of living Viverridae, Kretzoi proposed the new generic attribution of *Plioviverrops*.

Second issue is that of the familial identity of Plioviverrops, as well as Protictitherium and other taxa originated in the Early Miocene. Although apparently easy to solve, the matter remained open in the literature for a long time (e.g., de Beaumont, 1969) and periodically re-emerges (Semenov, 1989, 2008; Spassov et al., 2019; Tab. 1). Nowadays, a fairly wide consensus has established in considering these taxa and their lineages as hyaenids (among others Turner et al., 2008; Coca-Ortega & Pérez-Clarós, 2019; Wang et al., 2020; Galiano et al., 2022; Tab. 1). Genetic evidence has clearly pointed out that the sister group to the whole family Hyaenidae are the Herpestidae and Eupleridae (Koepfli et al., 2006; Agnarsson et al., 2010; Eizirik et al., 2010; Zhou et al., 2017; Westbury et al., 2019; Hassanin et al., 2021), and Viverridae stems at the base of the clade Hyaenidae + Herpestidae + Eupleuridae (see also Gaubert & Cordeiro-Estrela, 2006; Hassanin et al., 2021). Estimation of divergence between the latter three families (Hyaenidae and Herpestidae + Eupleuridae) suggests the arise of two clades during the Oligocene, generally with a mean age of divergence around 29 Ma (Koepfli et al., 2006; Zhou et al., 2017), although older (32.5 Ma; Eizirik et al., 2010) and younger estimations (24.5 Ma; Hassanin et al., 2021) have been proposed. Despite the uncertainties, these ages are far older than the oldest recognised hyaenid (ca. 17-16 Ma; see below). In the past, there was a fairly generalised consensus among scholars on which of the many earliest Miocene (Aquitanian, MN2; Hilgen et al., 2012) taxa of Europe could be among the ancestor of the whole Hyaenidae. Among these, Herpestides antiquus (de Blainville, 1841) particularly sparked the interest of scholars. This basal aelouroid taxon was often considered as the first member of a lineage leading to all hyaenids (de Beaumont, 1967), especially relevant for the genus Plioviverrops (de Beaumont & Mein, 1972) or to Proteles and its lineage (Thenius, 1966; Galiano et al., 2022). Nevertheless, nowadays, H. antiquus is recognised as a viverrid (Hunt, 1991; Turner et al., 2008) and Werdelin

& Solounias (1991) discouraged its use as a stem hyaenid due to the poor phylogenetic significance of its features. Regarding the earliest occurrence of hyaenids, there is still debate. de Bonis (1994) proposed "Herpestides" collectus de Bonis, 1973 from the MN2b (early Burdigalian) locality of Laugnac (France) as the earliest hyaenid of the fossil record. Indeed, de Bonis (1994) redescribed the specimens and ascribed them to Plioviverrops, as Plioviverrops collectus. Turner et al. (2008) recognised the distinction of "H." collectus from the genus Herpestides de Beaumont, 1967 but pointed out the lack of sufficient support for an attribution to either *Plioviverrops* or even to a Hyaenidae. We share Turner et al. (2008) doubts on, at the very least, de Bonis (1994)'s generic attribution. Unchallenged attribution of hyaenids comes from European deposits of the MN4-MN5 and are attributed to Protictitherium and *Plioviverrops*. Here we briefly but exhaustively review the known-knowns and the known-unknowns on the species historically ascribed to *Plioviverrops* (see Tab. 1). A list of known occurrences is reported in Tab. 2 and in Fig. 1.

The earliest taxon attributed to the genus in study herein is *Plioviverrops gervaisi* de Beaumont & Mein, 1972, described from the locality of Vieux Collonges, France (see Mein, 1958; correlated between MN4-MN5; de Bruijn et al., 1992; Mein, 1999; Steininger, 1999). The hypodigm of the species includes only few and isolated dental specimens (de Beaumont & Mein, 1972) that were initially ascribed in pars to *Progenetta* cf. praecurrens Dehm, 1950 and in pars to *Journanictis grivensis* Viret, 1951 by Mein (1958). *Plioviverrops gervaisi* is known from the type locality and reported also from Calatayud (Spain, MN6; Petter, 1976). In their hypothesis of the lineage of the early hyaenid *Plioviverrops*, de Beaumont & Mein (1972) identified *P. gervaisi* as the oldest and the most primitive of the lineage. This led them to propose the new subgenus *Protoviverrops* de Beaumont & Mein, 1972 to accommodate this primitiveness. Schmidt-Kittler (1976) retained this vision and pointed out the similarity between P. gervaisi and his new species Protictitherium intermedium Schmidt-Kittler, 1976 (Paşalar, Turkey, late MN5-MN6; Mayda et al., 2015), although the latter is somewhat more derived (i.e., towards other Protictitherium species). Werdelin & Solounias (1991) ignored the subgeneric distinction of de Beaumont & Mein (1972) and suggested instead the possible synonymy of P. gervaisi with Plioviverrops gaudryi de Beaumont & Mein, 1972 (see below), considering the similarity, the scarcity of specimens and limited diagnostic differences between them. Recently, Galiano et al. (2022) reproposed the use of Protoviverrops elevating it to generic rank. In their work, they use it for Protoviverrops gervaisi and Prot. intermedium. In the phylogenetic analysis proposed in the same work, these taxa were a priori included in a single operational taxonomic unit (OTU) that stems at the base of the clade of other Hyaenidae (apart from *Tungurictis*) (Galiano et al., 2022). Despite the clear primitiveness of both these taxa, their congenericity might need additional evidence and a deeper discussion.

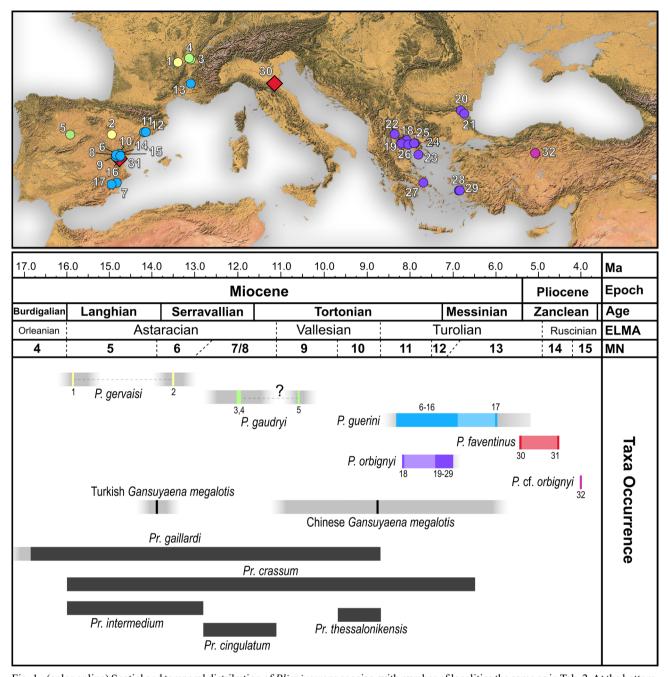


Fig. 1 - (color online) Spatial and temporal distribution of *Plioviverrops* species, with number of localities the same as in Tab. 2. At the bottom, the chronological distribution of taxa discussed in the text, i.e., *Gansuyaena megalotis* from Turkey (Schmidt-Kittler, 1976; Galiano et al., 2022) and China (Galiano et al., 2022); *Protictitherium cingulatum* (Schmidt-Kittler, 1976; Fraile, 2015; Mayda et al., 2015); *Protictitherium crassum* (Fraile, 2015, 2017); *Protictitherium gaillardi* (Koufos, 2012b; Fraile, 2015); *Protictitherium intermedium* (Schmidt-Kittler, 1976; Kaya et al., 2003; Fraile, 2015; Mayda et al., 2015); *Protictitherium thessalonikensis* (Koufos, 2012b). Abbreviations in the figures: *P., Plioviverrops*; *Pr., Protictitherium*.

The second species, in terms of chronology of its localities (Tab. 2 and Fig. 1), is *P. gaudryi* described from the MN7/8 French site of La Grive-Saint Alban (de Beaumont & Mein, 1972). As in the case of *P. gervaisi*, *P. gaudryi* is known almost exclusively from dental material. Again similarly to *P. gervaisi*, the authors describing it proposed a the new subgeneneric distinction, *Plioviverrops* (*Mesoviverrops*) de Beaumont & Mein, 1972, accounting for the dental features intermediate between *Protoviverrops* and true *Plioviverrops*, i.e.,

Plioviverrops orbignyi (Gaudry & Lartet, 1856). It should be noted that the type specimen of *P. gaudryi* (the maxillary fragment with P4-M1 MdC.LGr.1360) was originally part of the hypodigm of *Jourdanictis grivensis* Viret, 1951. In his revision of carnivorans from La Grive, Viret (1951) created this new viverrid taxon while also noting a plausible similarity with *Plioviverrops*, especially for upper teeth (Viret, 1951). Following authors supported this plausible relationships (de Beaumont, 1967, 1969; Crusafont-Pairó & Petter, 1969) until de Beaumont &

	Locality	Country	Chronology	Species	Ref.
1	Vieux Collonges	France	MN5 (16.0-13.7 Ma)	P. gervaisi	а
2	Calatayud	Spain	MN6 (13.7-12.75 Ma)	P. gervaisi	а
3	La Grive 1	France	MN7/8 (ca. 12.75-11.1 Ma)	P. gaudryi	a
4	La Grive 2	France	MN7/8 (ca. 12.75-11.1 Ma)	P. gaudryi	а
5	Los Valles de Fuentidueña	Spain	MN9 (11.1-9.7 Ma)	Plioviverrops cf. gaudryi	b
6	Puente Minero	Spain	MN11 (8.3 Ma)	P. cf. guerini	С
7	Crevillente 2	Spain	MN11 (ca. 8.16 Ma)	P. guerini	d
8	Viveros de Pinos	Spain	MN11 (8.7-7.5 Ma)	P. guerini?	е
9	Los Aguanaces	Spain	MN11 (~8.1 Ma)	P. cf. guerini	С
10	Los Aljezares-Aljezar B	Spain	MN12 (7.87 Ma)	P. guerini	С
11	Piera - Torrentet de Traginers	Spain	MN12 (ca. 7.6-7.1 Ma)	P. guerini	f
12	Torrent del Gall Mullat	Spain	MN12 (ca. 7.6-7.1 Ma)	P. guerini	g
13	Les Mistrales III	France	MN12 (ca. 7.6-7.1 Ma)	P. guerini	This work
14	Los Mansuetos	Spain	MN13 (6.9-6.8 Ma)	P. guerini	h
15	Concud-Cerro de la Garita	Spain	MN13 (6.9-6.8 Ma)	P. guerini	f
16	Las Casiones	Spain	MN13 (6.8 Ma)	P. guerini	i
17	La Alberca	Spain	MN13 (7.1-5.3 Ma)	P. guerini	j
18	Ravin des Zouaves 5	Greece	MN11 (ca. 8.2 Ma)	P. orbignyi	k
19	Prochoma-1	Greece	MN12 (ca. 7.6-7.1 Ma)	P. orbignyi	I
20	Kalimantsi 2	Bulgaria	MN12 (ca. 7.6-7.1 Ma)	P. cf. orbignyi	m
21	Kalimantsi 4	Bulgaria	MN12 (ca. 7.6-7.1 Ma)	P. orbignyi	m
22	Kiro Kuchuk	Northern Macedonia	MN12 (ca. 7.6-7.1 Ma)	P. orbignyi	n
23	Kryopigi	Greece	MN12 (ca. 7.6-7.1 Ma)	P. orbignyi	0
24	Vathylakkos-2	Greece	MN12 (ca. 7.3 Ma)	P. orbignyi	р
25	Vathylakkos-3	Greece	MN12 (ca. 7.3 Ma)	P. orbignyi	q
26	Perivolaki	Greece	MN12 (ca. 7.3-7.1 Ma)	P. orbignyi	r
27	Pikermi	Greece	MN12 (ca. 7.1 Ma)	P. orbignyi	р
28	Samos	Greece	MN12 (ca. 7.1 Ma)	P. orbignyi	p
29	Mytilinii-1 B	Greece	MN12 (ca. 7.1-7.0 Ma)	P. orbignyi	I
30	Brisighella	Italy	MN13 (5.4 Ma)	P. faventinus	
31	La Gloria 4	Spain	MN14 (4.54 Ma)	P. faventinus	е
32	Çalta-1	Turkey	MN15 (4.0 Ma)	P. orbignyi?	s

Tab. 2 - List of occurrences of *Plioviverrops* spp. known in literature. The number on the left refers to the localities of Fig. 1. References: ^a de Beaumont & Mein (1972); ^b Ginsburg et al. (1981); ^c Van Dam et al. (2001); ^d Montoya (1994); ^c Alcalá (1994); ^f De Villalta-Comella & Crusafont-Pairó (1948); ^g Golpe-Posse (1974); ^h Crusafont-Pairo & Petter (1969); ⁱ Salesa et al. (2012); ^j Piñero et al. (2017); ^k de Bonis & Koufos (1991); ¹ Koufos et al. (2009); ^m Spassov et al. (2006); ⁿ Spassov et al. (2019); ^o Lazaridis (2015); ^p Koufos (2009); ^q Koufos (2000); ^r Koufos (2006); ^s Sen & Saraç (2018).

Mein (1972) erected *P. gaudryi* on the very same maxillary fragment. In the same paper the latter authors reinforced the idea that, although MdC.LGr.1360 is a *Plioviverrops*, the mandibles MNHL.LGr.1361 and MNHL.LGr.1362 are clearly different in dental morphology (especially in comparison to the m1 NMB Ga 2113, the other specimens from La Grive-St. Albain; see de Beaumont & Mein, 1972) and belong to the viverrid *Jourdanictis*. Thus, the latter remains a valid viverrid taxon described from the same locality. This complex but straightforward attribution is followed by numerous authors (e.g., Kargopoulos et al., 2021) although some have synonymised *P. gaudryi* and *J. grivensis* (e.g., Galiano et al., 2022). The generic

distinction of *P. gaudryi* was retained by Galiano et al. (2022) as *Mesoviverrops gaudryi*. Nevertheless, the correspondent OTU in the phylogeny ("*Mesoviverrops* sp."; see Galiano et al., 2022) clusters with *P. orbignyi*, decreasing the support to the generic distinction between these taxa (Galiano et al., 2022). The only additional occurrence of *P. gaudryi* is that of Los Valles de Fuentidueña reported by Ginsburg et al. (1981).

The species *P. orbignyi* is the most renowned and the best characterised of the genus, thanks to an abundant record of cranial and postcranial specimens (unlike many species of the genus) and rich history of taxonomic classification and study (since Gaudry, 1862). As

mentioned above, Kretzoi (1938) chose it as the genotype species of *Plioviverrops* and de Beaumont & Mein (1972) reinforced this with the nominotypical subgenus. The majority of the occurrences of P. orbignyi comes from southeastern Europe, mainly located in Greece and in the Balkan area (see Fig. 1) and principally dated to the Turolian (MN12, see Tab. 2). The attribution to this species of the material from Gorna Sushitsa (Spassov et al., 2019) is doubtful (for the morphology of the p4 more similar to Protictitherium) and we prefer not including it. Similarly, occurrences reported outside the Greco-Balkan region (Koufos, 2009; Robles, 2014) remain doubtful and should be disregarded. Additionally, the occurrence of a small ictitheriine in the Early Pliocene locality of Çalta-1 (MN15, 4.0 Ma; Bernor & Sen, 2017), similar in size and dental features to P. orbignyi, challenges previous understanding of the evolution of *Plioviverrops*. If the provenance from Pliocene layers remained confirmed (since Turolian beds and fossils also crop out in the area; see Sen & Saraç, 2018), the presence of Plioviverrops in Çalta-1 would suggest a complex chronological setting that may indicate the presence of closely related species or a continuation of the lineage, once limited to the Miocene, into the Pliocene (Sen & Saraç, 2018). It is indeed uncertain if this taxon is conspecific with the Turolian species or rather a new taxon (Sen & Saraç, 2018).

Historically considered as the end term of the generic tendency towards hypocarnivory (de Beaumont & Mein, 1972; Werdelin & Solounias, 1991), P. orbignyi has been the subject of extensive discussion especially in relation to the extant aardwolf (the only living nondurophagous hyaenid). The morphology of P. orbignyi points out a certain degree of affinity with *Proteles*, e.g., its primitive auditory bullae are comparable to those of the aardwolf (Werdelin & Solounias, 1991). Thenius (1966) indeed identified this species as the ancestor of *Proteles.* Yet it could be argued that these similarities are symplesiomorphies and other features shown by P. orbignyi cannot be found in *Proteles*, e.g., the presence of an alisphenoid canal, a primitive character state for Hyaenidae (Werdelin & Solounias, 1991). Aside from the relationship with *Proteles* (see also below), nowadays Plioviverrops faventinus Torre, 1989 is considered the taxon of the lineage of *Plioviverrops* in which the derived morphology towards omnivory/insectivory culminates (Torre, 1989; Turner et al., 2008; Coca-Ortega & Pérez-Clarós, 2019).

Late Miocene deposits of western Spain yielded on of the youngest species of *Plioviverrops*, described as *Plioviverrops guerini* (De Villalta-Comella & Crusafont-Pairó, 1948) from the sites Torrentet de Traginers (Piera, MN12) and Concud-Cerro de la Garita (MN12) (Werdelin & Solounias, 1991; Alcalá, 1994; Montoya, 1997). The species is confidently confined to the MN11-MN12 of the Iberian Peninsula and France (Fig. 1), as older occurrences (Koufos, 2009; Robles, 2014) or records outside this area are dubious (e.g., Koufos, 2011) and should be disregarded. Dental features of *P. guerini* are comparable to those of *P. gaudryi*, despite the difference in age between the two occurrences (Fig. 1) and the larger size of the Iberian taxon (de Beaumont & Mein, 1972; Werdelin & Solounias, 1991). Indeed, the "primitiveness"

of its features in comparison to the coeval P. orbignyi is striking, as Werdelin & Solounias (1991) noted. Interestingly, de Beaumont & Mein (1972) suggested a direct relationship with P. gaudryi so included it in the subgenus *Mesoviverrops*: in their view *P. (Mesoviverrops)* guerini represented a parallel lineage of this small-sized hyaenids which maintained "neutral" features unlike P. (Plioviverrops) orbignyi, which derived towards more omnivorous diet (de Beaumont & Mein, 1972). In their recent study, Galiano et al. (2022) attribute P. guerini to the new genus Gansuyaena Galiano et al., 2022. According to these authors, "G." guerini differs from the genotypical species, Gansuyaena megalotis Galiano et al., 2022, for the larger size, the stouter premolars (especially the p4 for the buccolingually large talonid) and the proportionally short m1 talonid with more developed entoconid (see Galiano et al., 2022). The generic re-attribution apparently relies on "the overall cusp development", "the uncrowded premolar series", and the "weak anterior cusp of p4" (Galiano et al., 2022, p. 104). Phylogenetically, Werdelin & Solounias (1991) proposed *P. guerini* as sister taxon of *P. orbignyi*, whereas Turner et al. (2008) reported an unresolved polytomy between P. gaudryi, P. guerini and P. faventinus. In their phylogeny, Galiano et al. (2022) grouped Gansuyaena in a single OTU and the retrieved topology supports their interpretation as the closest relative of *Proteles*. The origin of the extant *Proteles* from a basal group of hyaenids is well established in literature, and surely the *Plioviverrops* lineage was regarded as the plausible one from which the aardwolf derived (as mentioned above and confirmed by molecular and morphological interpretations; among others Werdelin & Solounias, 1991; Westbury et al., 2019). The estimations of divergence of *Proteles* from the lineage of other extant hyaenid are currently suggesting a Late Miocene age: 7.2 Ma according to Eizirik et al. (2010) and 10 Ma according to Hassanin et al. (2021). Considering that the earliest records of fossil *Proteles* come from Gelasian sites like Swartkrans, Kromdraai Member 2, Cooper's Cave and Sterkfontein Member 5 (whose "East" layers are dated to ca. 2.18 Ma by Granger et al., 2015, and not 3.67 Ma as reported by Galiano et al., 2022, the estimations of divergence fit with both the interpretations of a descendance from *Plioviverrops* and/ or from Gansuyaena, and do not allow a resolution of this debate.

The last species of the genus to be discussed is, of course, Plioviverrops faventinus. It was described by Danilo Torre in 1989 using the abundant cranial and postcranial material from Cava Monticino (Brisighella, Italy, 5.53-5.33 Ma; Marabini & Vai, 1989; Torre, 1989; Vai, 1989). This form shows dental morphologies typical of a hypocarnivorous species such as crushing-puncturing cusps on the molars (Ferretti, 2007; Bartolini-Lucenti et al., 2022) and reduced body size. Compared to the other species previously described, in literature it has often been overlooked or poorly considered. Torre (1989) considered its feature more similar to P. orbignyi than to P. guerini, although he recognised, correctly, that *P. faventinus* was more derived than the Greek taxon. He proposed a possible phylogenetic relationship between P. faventinus and P. orbignyi, with the former as the result of a westward dispersal during the Messinian of the Greco-Balkan species (Torre, 1989). Such an hypothesis is consistent considering the latest record of the species at La Gloria 4 (Spain, MN14; Alcalá, 1994). This occurrence makes *P. faventinus* one of the last species of *Plioviverrops* to survive in Eurasia. From the ecomorphological point of view, the derived dental features retained by *P. faventinus* led Werdelin & Solounias (1996) to regard it as a mongoose-like taxon, rather similar to modern insectivores.

The confused and complex systematic and taxonomic states of *Plioviverrops*, as well as of the genus *Protictitherium*, might suggest that these genera are paraphyletic. Resolving the present taxonomic conundrum of these species is a daunting task and surely not something we are willing to endeavour in the present paper. The aim of this study is to review and update the taxonomic status of *P. faventinus*, redescribing and expanding the comparison of the original material by Torre (1989) and the one preliminary described by Bartolini-Lucenti et al. (2022), with other species of *Plioviverrops* in the light of new research and to refine the palaeoecological interpretation of this small Messinian hyaenid.

MATERIALS AND METHODS

Considered specimens and comparative sample

The analysed material includes cranial and dentognathic specimens recovered from the site of Cava Monticino (Brisighella, Ravenna, Italy). The fossils are housed at the Dipartimento di Scienze della Terra of the Università di Firenze and at the Museo Civico di Scienze Naturali Malmerendi (Faenza, Italy). Regarding the analyses, we focused on a morphological and morphometrical comparison with fossil taxa of the genera Plioviverrops and Protictitherium and with modern species of small carnivores of the suborder Feliformia, particularly Herpestidae and Viverridae. During the morphological comparison, special attention was given to identify similar dental morphologies hinting comparable food habits between the studied taxon and the comparative sample. This is helpful to outline the possible composition of food resources in the diet of P. faventinus and its palaeoecology. Among the specific features in the postcanine dentition considered in this analysis there are: the length of the metastylar blade of P4, the morphology of m1 trigonid and the presence of cingula/cingulids (as expressed also in literature; e.g., Crusafont-Pairó & Truyols-Santonja, 1956; Werdelin & Solounias, 1991; Ferretti, 2007; Coca-Ortega & Pérez-Clarós, 2019). For the comparison with fossil taxa, direct observation of both samples and digital materials has been used. As fossil comparison material we used specimens of: P. gaudryi, MN7/8-MN9, from La Grive-St. Alban (NMB GA 2113; MdC LGR 1360) and Los Valles de Fuentidueña (Ginsburg et al., 1981); P. gervaisi, MN5-MN6, from Vieux-Collonges (e.g., UCBL FSL 65565, UCBL FSL 65566) and Catalayud (de Beaumont & Mein, 1972); P. guerini, MN11-MN13, from Los Mansuetos (IPS2056), Les Mistrales III (UCBL FLS 295052) and other Spanish localities of Tab. 2 (see Montoya, 1994); P. orbignyi from Pikermi and Samos (e.g., MNHN-PIK-3032; MB.Ma.29580) and other

Greek-Balkan localities of Tab. 2 (see Koufos, 2012a: Lazaridis, 2015). We also revised relevant literature on fossil taxa (De Villalta-Comella & Crusafont-Pairó, 1948; Crusafont-Pairó & Petter, 1969; de Beaumont, 1969; Petter, 1976; Schmidt-Kittler, 1976; Ginsburg et al., 1981; de Bonis & Koufos, 1991; Werdelin & Solounias, 1991; Alcalá, 1994; Montoya, 1997; Koufos, 2006, 2009, 2011, 2012b; Sen & Saraç, 2018; Coca-Ortega & Pérez-Clarós, 2019; Galiano et al., 2022). Additional fossil comparison material includes taxa of Protictitherium and Gansuyaena, directly studied by us or taken from literature. These are: Gansuyaena megalotis Galiano et al., 2022, MN6-?, from the Linxia Hui province and Paşalar (Galiano et al., 2022); Protictitherium cingulatum Schmidt-Kittler, 1976, MN6-MN7/8, from Yeni Eskisihar (Schmidt-Kittler, 1976) and Paşalar (Mayda et al., 2015); Protictitherium crassum (Depéret, 1892), MN7/8-MN12, from Batallones-1 (Fraile, 2015), Can Mata (ICP), La Grive-St. Alban (MdC, UCBL); Protictitherium gaillardi (Forsyth Major, 1903), MN7/8-MN10, from La Grive-St. Alban (MdC), Castell de Barberà (ICP), San Miquel del Taudell (Fraile, 2015); Protictitherium intermedium Schmidt-Kittler, 1976, MN6, from Candir (Schmidt-Kittler, 1976; Mayda et al., 2015), Mordoğan (Kaya et al., 2003) and Paşalar (Schmidt-Kittler, 1976; Mayda et al., 2015); Protictitherium thessalonikensis Koufos, 2012b, MN10, from Ravin de la Pluie (Koufos, 2012a).

Comparative extant species material include the following taxa (see Supplementary Online Material [SOM] 1: Tab. S1 for the catalogue numbers): Herpestidae: Atilax paludinosus (Cuvier, 1829); Bdeogale crassicauda Peters, 1852; B. nigripes Pucheran, 1855; Crossarchus alexandri Thomas & Wroughton, 1907; C. ansorgei Thomas, 1910; C. obscurus Cuvier, 1825; C. platycephalus Goldman, 1984; Cynictis penicillata (Cuvier, 1829); Galerella sanguinea (Rüppell, 1835); Helogale hirtula Thomas, 1904; Hel. parvula Sundevall, 1846; Herpestes brachyurus Gray, 1837; He. ichneumon Linnaeus, 1758; He. pulverulentus Wagner, 1839; Ichneumia albicauda Cuvier, 1829; Mungos mungo (Gmelin, in Linnaeus, 1788); Paracynictis selousi (de Winton, 1896); Suricata suricatta Schreber, 1776; Urva edwardsii (Geoffroy Saint-Hilaire, 1813); *U. javanica* (Geoffroy Saint-Hilaire, 1813); Xenogale naso (de Winton, 1901); Viverridae: Civettictis civetta (Schreber, 1776); Genetta genetta Linnaeus, 1758; Ge. tigrina Schreber, 1776; Ge. victoriae Thomas, 1901; Paradoxurus hermaphroditus (Pallas, 1777); Pa. jerdoni Blandford, 1885; Viverra megaspila Schreber, 1776; V. zibetha Linnaeus, 1758; Viverricula indica (Geoffroy Saint-Hilaire, 1803).

Body-mass reference and calculation methods

The body masses of *P. faventinus* and of fossil species used in the analyses were estimated using the regression formula provided by Legendre & Roth (1988) based on length and width of the m1 (SOM 1: Tab. S2). Despite the known problematics affecting any body-mass estimation based on tooth measures (e.g., Van Valkenburgh, 1990), our resulting values for the fossil taxa (SOM 1: Tab. S3) are in line with those obtained, independently, by other researchers (e.g., Coca-Ortega, 2019). The estimated average body weight of *P. faventinus* is circa 5.3 kg, with

a maximum of 6.5 kg and a minimum of 4.3 kg (SOM 1: Tab. S2). These body masses were then used to calculate the RPS ratios for the fossil taxa (see below and SOM 1: Tab. S3). Regarding the extant comparative sample, body-mass values were taken from literature. Details are reported in SOM 1: Tab. S3, along with the ecological ratios described in the following paragraph.

Metric procedures and morphometric analyses

The morphometric comparison involved specific dental measurements and body-mass estimation, commonly used in taxonomical and ecological determination of carnivorans. For linear measurements, we used standardised measurements proposed by von den Driesch (1976) and Werdelin & Solounias (1991) with slight modifications (Fig. 2). The measurements were taken directly on the samples using a digital caliper to the nearest 0.1 mm. In the limited cases of missing measures to characterise specimens taken from literature, we used ImageJ (v. 1.52a; Schneider et al., 2012) on digital images to improve the database. When 3D scans were available instead of photos, we used the measuring tool of Artec Studio 17 Professional (v. x64 17.12.2.15; Artec3D, 2024) to take linear measurements.

We performed two Principal Component Analyses (PCA) on selected variables of P4 and m1 in the attempt of discriminating between different taxa while taking into consideration several dental parameters. Particularly, we considered six measurements on the P4 (Fig. 2) and five measurements on the m1 (Fig. 2). These measurements are: the buccal length of the P4; the maximum buccolingual width of the P4; the buccolingual width of the carnassial blade; the mesiodistal lengths of the parastyle, of the paracone and of the metastylar blade; the mesiodistal lengths of m1, of the trigonid and of the talonid, and the maximum buccolingual width of the carnassial and of its talonid (Fig. 2). The raw measurements were used to perform the PCA. In those analyses we included species of Protictitherium as comparison taxa (see above). The complete datasets for the two analyses are available on Zenodo at the following link: https://doi. org/10.5281/zenodo.14671672. We also ran a correlation test between each of the first three principal components and body mass of the fossil taxa. We used the software RStudio (v. 2023.12.1+402 "Ocean Storm" Release 4da58325ffcff29d157d9264087d4b1ab27f7204, 2024-01-28; RStudio Team, 2024) in R environment (v. 4.3.2, R Core Team, 2024) to perform analyses and produce graphs. PCAs on upper and lower tooth measurements were carried out using the function prcomp() ("stats" package v.4.3.2; R Core Team, 2024); the correlation test was performed via the function cor.test() ("stats" package v.4.3.2; R Core Team, 2024). The plots were obtained with ggplot() ("ggplot2" package v.3.4.0; Wickham et al., 2016) and pch3D() ("rgl" v. 1.2.1; Adler et al., 2003).

Considering the established characterisation of early hyaenids (namely *Plioviverrops* and *Protictitherium*) as mongoose-like and civet-like taxa (Werdelin & Solounias, 1991), we decided to test the possible ecomorphological affinities of these fossil hyaenids (see SOM 1: Tab. S3), especially in comparison to extant herpestids and viverrids. We thus included in the analysis 24 extant species and nine fossil hyaenids. In addition to *P*.

faventinus, we considered P. guerini, P. orbignyi, G. megalotis, Pr. cingulatum, Pr. crassum, Pr. gaillardi, Pr. intermedium and Pr. thessalonikensis. Dental parameters used for the construction of the ecomorphological graph were established in literature for palaeoecological investigations of fossil carnivores and discussed by Van Valkenburgh (1989). For each considered species (both fossil and modern species mentioned above) two parameters were calculated using the formulae given in Van Valkenburgh (1989). These parameters are: 1) the relative blade length (RBL), i.e., the ratio between length of the trigonid blade and the length of the m1; 2) the relative premolar size (RPS), i.e., the ratio between the width of the p4 and the cubic root of the body mass. For the fossil taxa, the body mass was estimated as described in the previous paragraph. In general terms (see Van Valkenburgh, 1989), RPS gives information on the relative portion of hard material consumed and RBL on the percentage of meat. These parameters have proved valuable for inferences on the composition of diet of carnivores, especially in terms of carnivory grade (sensu Crusafont-Pairó & Truyols-Santonja, 1956) and relative durophagy of the taxa (among others Coca-Ortega & Pérez-Clarós, 2019; Tarquini et al., 2020; Bartolini-Lucenti & Rook, 2021; Landry et al., 2021). The data were standardised following Van Valkenburgh (1989), in order to be comparable with the results in literature. See SOM 1: Tab. S3 for values of the extant taxa used in the analysis. We then performed a discriminant function analysis on the same variables using a priori dietary groups for the extant species and then plotted the fossil taxa a posteriori. This was done to further test the possible dietary inferences for the considered fossil species. The used groups for the extant species are: 1) carnivores, when meat is the key element in the diet of the taxon; 2) frugivores, when fruits compose more than any other income in the taxon's diet; 3) insectivores, for the taxa that feed on insects and chitinous-shelled invertebrates; 4) omnivores, when no particular item dominates the diet of the considered taxon. See SOM 1: Tab. S3 for the list of taxa, referred dietary group and bibliographic reference of the reported information. The analysis was performed in RStudio using the function *lda()* ("MASS" v. 7.3-60; Ripley et al., 2013).

Genus abbreviations

B., Bdeogale; C., Crossarchus; G., Gansuyaena; Ge., Genetta; H., Herpestides; He., Herpestes; Hel., Helogale; P., Plioviverrops; Pa., Paradoxurus; Pc., Paracynictis; Pr., Protictitherium; Prot., Protoviverrops; Pt., Proteles; U., Urva; V., Viverra.

Measurement abbreviations

AP1-P4 L, alveolar length of the upper premolar row; GPW, greatest width of the palate measured at the level of P4-M1 interalveolar space; HPrac, height between the angular process and the mandibular condyle; HR, height of the mandibular ramus, between the angular process and the dorsal tip of the coronoid process; L, mesiodistal length; Ll, mesiodistal length on the lingual side of the tooth (in the P4 is the maximum length from the protocone to the end of the metastylar blade; in the M1-M2, is the mesiodistal length of the lingual portion of the trigon);

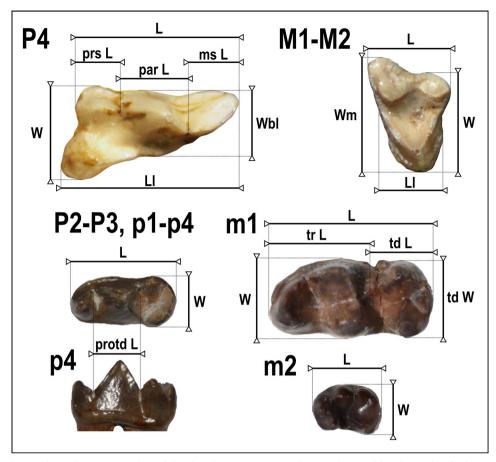


Fig. 2 - (color online) Schematic representation of the dental measurements taken on the considered sample of *Plioviverrops* and on the comparison specimens. Abbreviations, in alphabetical order: L, mesiodistal length; Ll, mesiodistal length on the lingual side of the tooth (in the P4, it is the maximum distance from the protocone to the end of the metastylar blade; in the M1-M2, it is the mesiodistal length of the lingual portion of the trigon); par, P4 paracone; protd, protoconid; protd L, mesiodistal length of the p4 protoconid (measured only for the p4); prs, P4 parastyle; ms, P4 metastylar blade; td, m1 talonid; tr, m1 trigonid; W, buccolingual width; Wbl, buccolingual width of the P4 blade; Wm, mesial buccolingual width of the M1-M2.

MdiastH, height of the mandible corpus at the diastema between canine and first premolar; Mm1B, breadth of the mandible corpus below the midpoint of the m1; Mm1H, height of the mandible corpus distal to the m1; Mp3p4B, breadth of the mandible corpus between the p3 and p4; Mp4H, height of the mandible corpus distal to the p4; ms, P4 metastylar blade; par, P4 paracone; protd, protoconid; protd L, mesiodistal length of the p4 protoconid (measured only for the p4); prs, P4 parastyle; PwP1, width of the palate at the level of the lingual side of the P1; PWP2, width of the palate at the level of the lingual side of the P2; td, m1 talonid; tr, m1 trigonid; W, buccolingual width; Wbl, buccolingual width of the P4 blade; Wm, mesial buccolingual width of the M1-M2; WR, maximum rostrocaudal width of the mandibular ramus.

Institutional abbreviations

BRS, Cava Monticino site, Brisighella, Ravenna (Italy); CBL, Collezione Borzatti, Museo di Antropologia e Etnologia di Firenze, Università degli Studi di Firenze, Florence (Italy); DSTUNIFI, Dipartimento di Scienze della Terra, Università di Firenze, Florence (Italy); ICP, Institut Català de Paleontologia Miquel Crusafont, Cerdanyola del Vallès (Spain); MB, Museum für

Naturkunde Berlin, Berlin (Germany); MdC, Musée des Confluences, Lyon (France); MNHN, Muséum national d'Histoire naturelle, Paris (France); MSF, Museo Civico di Storia Naturale Malmarendi, Faenza (Italy); MZUF, Collezione Zoologica "La Specola", Museo di Storia Naturale, Università degli Studi di Firenze, Florence (Italy); NMB, Basel Naturhistorisches Museum, Basel (Switzerland); UCBL, Université Claude Bernard Lyon-1, Lyon (France); UMMZ, University of Michigan Museum of Zoology, University of Michigan (US).

SYSTEMATIC PALAEONTOLOGY

Order Carnivora Bowdich, 1821 Family Hyaenidae Gray, 1821

Genus Plioviverrops Kretzoi, 1938

Type species - Plioviverrops orbignyi (Gaudry & Lartet, 1856).

Included species - Plioviverrops gaudryi de Beaumont & Mein, 1972, *Plioviverrops guerini* (De Villalta-Comella

& Crusafont-Pairó, 1948), *Plioviverrops gervaisi* de Beaumont & Mein, 1972, *P. orbignyi* (Gaudry & Lartet, 1856), *Plioviverrops faventinus* Torre, 1989.

Plioviverrops faventinus Torre, 1989 (Figs 3-5; Tabs 3-6)

Holotype - MSF 92 and MSF 92.1 (both BRS 5/34), respectively right mandible fragment with p3-m2 and left mandible fragment with p4-m2.

Referred Material from Cava Monticino - MSF 62, fossiliferous block containing two fragmentary skulls of *Plioviverrops* and postcranial fragments of Carnivora indet. cf. *Plioviverrops* in anatomical connection.

Cranial material (field numbers in parentheses): DSTUNIFI BRS 25, right maxillary with P4; MSF 408 (BRS 5/33), palate with left and right P4; MSF 430 (BRS 19/5), left maxillary fragment with P3-P4.

Upper dentition (isolated teeth): DSTUNIFI BRS 3, left C; DSTUNIFI BRS 24, right C; MSF 423_1 (BRS 5/294), right C; MSF 411 (BRS 5/61), right C; MSF 417_2 (BRS 5/278), right P2; MSF 423_1 (BRS 5/279), left P2; MSF 424_1 (BRS 5/279), left P2; MSF 424_2 (BRS 5/279), left P2; DSTUNIFI BRS, right P3; DSTUNIFI BRS 9/4, left P3; DSTUNIFI BRS 9/5, right P3; DSTUNIFI BRS 27_1, right P3; DSTUNIFI BRS 27_2, right P3; MSF 418 (BRS 5/300), right P3; MSF 425_1 (BRS 5/64), right P3; MSF 425_2

(BRS 5/65), left P3; MSF 425_3 (BRS 5/301), right P3; MSF 425_4 (BRS 5/281), left P3; DSTUNIFI BRS 25, right P4; DSTUNIFI BRS 3/34, right P4, erratic; DSTUNIFI BRS 25/CP3_1, left P4; MSF 415 (BRS 5/165), right P4; MSF 426_1 (BRS 5/63), left P4; MSF 426_2 (BRS 5/297), right P4; MSF 426_3 (BRS 5/162), left P4; DSTUNIFI BRS 16/5 right M1, erratic; DSTUNIFI BRS 25/CP3_2, left M1; MSF 413 (BRS 5/313), left M1; MSF 428_1 (BRS 5/310), right M1; MSF 428_2 (BRS 5/56), right M1; MSF 428_3 (BRS 5/sn), right M1; DSTUNIFI BRS 25/CP3_3, M2; DSTUNIFI BRS 1/26, left M2; MSF 414_1 (BRS 5/57), right M2; MSF 414_2 (BRS 5/312), right M2.

Mandible: DSTUNIFI BRS 1/19, left hemimandible fragment with c; DSTUNIFI BRS 5/179, right edentulous hemimandible fragment; DSTUNIFI BRS 2/5, right edentulous mandible; MSF 93 (BRS 5/30), left mandible fragment with c and p3; MSF 94 (BRS 19/6), right edentulous mandible fragment; MSF 407 (BRS 5/ 158), right hemimandible fragment with p3-m2; MSF 448, right hemimandible fragment with p4; MSF 449, left edentulous hemimandible fragment.

Lower dentition (isolated teeth): DSTUNIFI BRS 27_1, right c; MSF 412 (BRS 5/sn), left c; MSF 423_1 (BRS 5/16), left c; MSF 423_2 (BRS 5/293), right c; MSF 423_3 (BRS 5/62), right c; MSF 423_4 (BRS 5/279), right c; DSTUNIFI BRS 26_1 left p2; DSTUNIFI BRS 9/5, right p3; DSTUNIFI sn, left p3, erratic; DSTUNIFI BRS 9/6, right p3; MSF 409 (BRS 5/167), right p3; DSTUNIFI BRS 24, left p4; DSTUNIFI BRS 25/CP3_4, right p4;

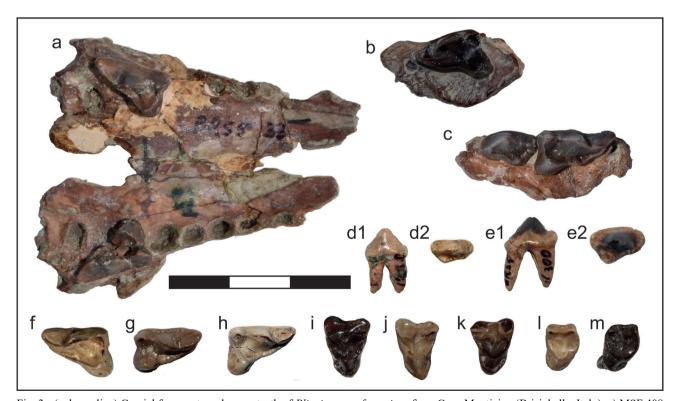


Fig. 3 - (color online) Cranial fragments and upper teeth of *Plioviverrops faventinus* from Cava Monticino (Brisighella, Italy). a) MSF 408 (BRS 5/33), cranial fragment with P4 in ventral view. b) DSTUNIFI BRS 25, right maxillary fragment with P4 in ventral view. c) MSF 430 (BRS 19/5), left maxillary fragment with P3-P4 in ventral view. d) MSF 417 (BRS 5/271), right P2 in buccal (d1) and occlusal (d2) views. e) MSF 418 (BRS 5/300), right P3 in buccal (e1) and occlusal (e2) views. f) MSF 415 (BRS 5/165), right P4 in occlusal view. g) MSF 424 (BRS 5/162), left P4 in occlusal view. h) MSF 426 (BRS 5/63), left P4 in occlusal view. i) DSTUNIFI BRS25/CP3_2, left M1 in occlusal view. j) MSF 413 (BRS 5/313), left M1 in occlusal view. k) MSF 428 (BRS 5/310), right M1 in occlusal view. l) MSF 414 (BRS 5/67), left M2 in occlusal view. m) DSTUNIFI BRS25/CP3_3, left M2 in occlusal view. Scale bar equals 3 cm.

MSF 410 (BRS 5/168), right p4; DSTUNIFI BRS 4/5, right m1; DSTUNIFI BRS 27_2, right m1; DSTUNIFI BRS 16/6, left m1; DSTUNIFI BRS 3, right m1, erratic; DSTUNIFI BRS 25, left m1; MSF sn (BRS 27_), left m1; MSF 416 (BRS 5/54), left m1; MSF 417_1 (BRS 5/169),

right m1; MSF427_1 (BRS 5/314), left m1; MSF 427_2 (BRS 5/sn), right m1; MSF 427_3 (BRS 5/67), right m1; MSF 427_4 (BRS 5/68), right m1; DSTUNIFI BRS 4/10, left m2; DSTUNIFI BRS 26_2, left m2; DSTUNIFI BRS 27_4, right m2; MSF 429_1 (BRS 5/sn), left m2; MSF

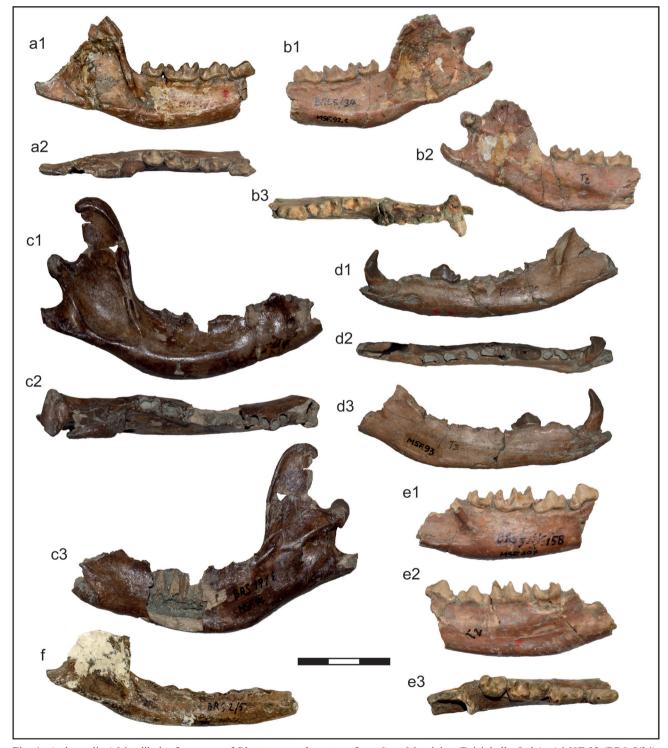


Fig. 4 - (color online) Mandibular fragments of *Plioviverrops faventinus* from Cava Monticino (Brisighella, Italy). a) MSF 92 (BRS 5/34), right mandible fragment with p3-m2 in buccal (a1) and occlusal (a2) views. b) MSF 92.1 (BRS 5/34), left mandible fragment with p4-m2 in buccal (b1), lingual (b2) and occlusal (b3) views. c) MSF 94 (BRS 19/6), right edentulous mandible fragment in buccal (c1), lingual (c2) and occlusal (c3) views. d) MSF 93 (BRS 5/30), left mandible fragment with c and p3 in buccal (d1), lingual (d2) and occlusal (d3) views. e) MSF 407 (BRS 5/158), right hemimandible fragment with p3-m2 in buccal (e1), lingual (e2) and occlusal (e3) views. f) DSTUNIFI BRS 2/5, right edentulous mandible. Scale bar equals 3 cm.

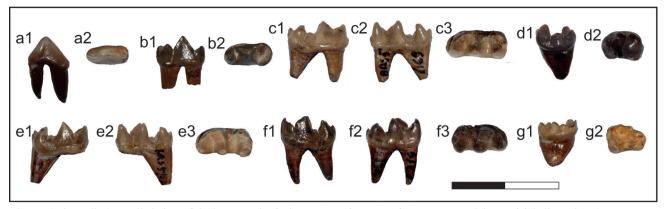


Fig. 5 - (color online) Detailed view of the lower teeth of *Plioviverrops faventinus* from Cava Monticino (Brisighella, Italy). a) DSTUNIFI BRS 26, left p2 in buccal (a1) and occlusal (a2) views. b) DSTUNIFI BRS 25/CP3_4, right p4 in buccal (b1) and in occlusal (b2) views. c) MSF 417_1 (BRS 5/169), left p2 in buccal (c1), in lingual (c2) and in occlusal (c3) views. d) DSTUNIFI BRS 26_2, left m2 in buccal (d1) and in occlusal (d2) views. e) MSF 427_3 (BRS 5/67), right p2 in buccal (e1), in lingual (e2) and in occlusal (e3) views. f) MSF427_1 (BRS 5/314), left m1 in buccal (f1), in lingual (f2) and in occlusal (f3) views. g) MSF 429_4 (BRS 5/170), right m2 in buccal (g1) and in occlusal (g2) views. Scale bar equals 2 cm.

429_2 (BRS 5/sn), right m2; MSF 429_3 (BRS 5/sn), left m2; MSF 429_4 (BRS 5/170), right m2; MSF 429_5 (BRS 5/286), right m2.

Referred material from La Gloria 4 - See Alcalá (1994).

Description - The reduced number of cranial specimens, and their deformation, makes difficult to describe their morphologies properly. The general structure of the muzzle is narrow and tapered in its rostral portion (Fig. 3). In ventral view, the palate is relative narrow. In fact, MSF 408 has a tapered and triangular morphology that tends to widen slightly and gradually at the height of the P4. The maxillary increases in height laterally at the level of P4. The upper canines are marked by a curved and high crown. Dentally, the premolars, upper and lower are moderately compressed buccolingually and with an oval occlusal outline. The P1 is present and single-cusped. The P2 is larger than the P1, two-rooted and has a small distolingual expansion marked by an evident accessory cusp. The P3 protocone is larger than that of P2, especially mesiodistally. The P3 has two accessory cusps: a small one distal to the protocone, and a larger second one on the lingual expansion. This cusp connects to the distal and mesial crests of the protocone with an evident cuspulelike cingulum, as visible in MSF 418, MSF 424 and MSF 425. In buccal view, the P4 (e.g., MSF 424_3 and MSF 426 1) shows a well-developed and pointed paracone,

slightly projected in distal direction. The parastyle instead is shorter but still fairly pointed. The metastylar blade is rather shortened mesiodistally, especially in comparison to the other P4 cusps. In occlusal view, the protocone is considerably enlarged, expanded in comparison to mesiodistal length of the tooth and not particularly sharp. It projects mesiolingually. On the lingual side of the P4, an evident cuspule-like cingulum extends distally from the protocone to the base of the metastyle. The protocone and the cingulum give the tooth an odd subtriangular occlusal shape, especially clear in MSF 424 3. The M1 has three main cusps and a three-sided occlusal shape. Buccally, the paracone is smaller than the metacone, especially mesiodistally, and both are bounded by a wide buccal cingulum marked by a medial notch between the buccal cusps. MSF 413 exemplifies this. Lingually, a large-based and pointed protocone identifies a wide trigon basin bounded by a the pre- and postprotocrista. The latter shows a small but evident cuspule, possibly a feeble metaconule. The lingual side of the protocone there is marked by a cingulum. It is generally particularly developed on the mesial and the distal side of the protocone, e.g., MSF 413, but it can almost coalesce into a continuous cingulum in some specimens (e.g., DSTUNIFI BRS5/CP3_2). In addition, M1 has a slight distal curvature.

The M2 recalls M1 in occlusal shape and features, e.g., MSF 414_1 and MSF 414_2 both possess a slight distal curvature, a prominent buccal cingulum, an accessory

ID	Element	Side	P3 L	P3 W	P4 L	P4 LI	P4 W	P4 Wbl	P4 prs L	P4 par L	P4 ms L	GPW	PwP1	PWP2	AP1-P4 L
DSTUNIFI BRS 25	maxillary fr.	R	-	-	-	-	7.8	5.5	3.1	5.0					
MSF 408 (BRS 5/33)	palate	R	-	-	11.8	12.9	8.1	5.4	3.5	4.3	5.1	36.4	18.4	20.6	33.6
MSF 430 (BRS 19/5)	maxillary fr.	L	9.3	5.6	12.4	13.8	7.2	6.1	3.2	5.0	5.0	-	-	-	-

Tab. 3 - Measurements (mm) of maxillary fragments of Plioviverrops faventinus from Cava Monticino. Abbreviations in Materials and Methods.

ID	Tooth	Side	L	W	Wbl	prs L	par L	ms L	LI	Wm
DSTUNIFI BRS 3	С	L	5.7	4.5	-	-	-	-	-	-
MSF 411 (BRS 5/61)	С	R	6.5	5.0	-	-	-	-	-	-
MSF 423_1 (BRS 5/294)	С	R	6.6	4.3	-	-	-	-	-	-
MSF 417_12 (BRS 5/278)	P2	R	7.1	3.9	-	-	-	-	-	-
MSF 424_1 (BRS 5/279)	P2	L	7.2	3.9	-	-	-	-	-	-
MSF 424_2 (BRS 5/279)	P2	L	7.4	4.9	-	-	-	-	-	-
DSTUNIFI BRS	P3	R	8.2	5.5	-	-	-	-	-	-
DSTUNIFI BRS 9/4	P3	L	8.5	5.5						
DSTUNIFI BRS 9/5	P3	L	9.5	6.1						
DSTUNIFI BRS 27_2	P3	R	9.2	5.9	-	-	-	-	-	-
MSF 418 (BRS 5/300)	P3	R	9.2	5.9	-	-	-	-	-	-
MSF 425_1 (BRS 5/64)	P3	R	8.6	5.4	-	-	-	-	-	-
MSF 425_2 (BRS 5/65)	P3	L	8.3	5.5	-	-	-	-	-	-
MSF 425_3 (BRS 5/301)	P3	R	9.8	6.0	-	-	-	-	-	-
MSF 425_4 (BRS 5/281)	P3	L	8.4	5.6	-	-	-	-	-	-
MSF 426_1 (BRS 5/63)	P3	L	11.2	8.0	5.5	3.1	4.9	4.1	12.1	-
DSTUNIFI BRS 3/34	P4	L	12.4	9.0	6.6	3.4	4.8	4.3	14.8	-
DSTUNIFI BRS 25/ CP3_1	P4	L	11.6	7.9	6.1	3.4	5.0	4.6	14.0	-
MSF 415 (BRS 5/165)	P4	R	11.3	8.3	6.1	3.4	4.0	3.8	12.1	-
MSF 424_2 (BRS 5/297)	P4	R	11.6	8.5	5.9	3.6	4.1	4.4	12.3	-
MSF 424_3 (BRS 5/162)	P4	L	11.5	7.3	5.6	3.7	4.7	4.4	13.1	-
DSTUNIFI BRS 16/5	M1	R	6.7	9.1	-	-	-	-	4.7	9.8
DSTUNIFI BRS 25/ CP3_2	M1	L	7.7	9.8	-	-	-	-	5.4	10.4
MSF 413 (BRS 5/313)	M1	L	7.2	10	-	-	-	-	4.9	10.3
MSF 428_1 (BRS 5/310)	M1	R	7.1	8.8	-	-	-	-	4.7	9.2
MSF 428_2 (BRS 5/56)	M1	R	7.3	9.9	-	-	-	-	2.9	10.5
MSF 428_3 (BRS 5/sn)	M1	R	7.5	10.1	-	-	-	-	5.0	10.4
DSTUNIFI BRS 25/ CP3_3	M2	R	5.7	7.6	-	-	-	-	5.0	8.1
MSF 414_1 (BRS 5/57)	M2	R	5.5	7.7	-	-	-	-	4.9	7.8
MSF 414_2 (BRS 5/312)	M2	R	5.5	8.4	-	-	-	-	4.6	8.4

Tab. 4 - Measurements (mm) of isolate upper teeth of Plioviverrops faventinus from Cava Monticino. Abbreviations in Materials and Methods.

cuspule on the postprotocrista (metaconule), and the lingual cingulum on the base of the protocone. In contrast to the M1, however, the M2 is more squared, especially in its buccal side. The M2 protocone is proportionally more developed than paracone and metacone. The lingual cingulum is proportionally developed as it is in M1.

In lateral view, the mandible is tapered and with a slightly curved shape with a dorsal concavity and tending to thin in the rostral portion (Fig. 4). If observed in section, the mandible corpus is ovoidal, with a slight thickening in its ventral part. In occlusal view, the tooth row is gently arched laterally, especially at the level of the p4. There are no diastemata in the postcanine dentition, except for a small one between c and p1 (Fig. 4). There can be one

or two mental foramina on the lateral side of the corpus. The rostral one is the largest and is located at the level of the distal side of p1 or mesial root of p2; when the second is present, it is smaller and located below the distal root of the p2 or mesial side of p3. The coronoid process does not show evident development in vertical direction remaining slightly inclined compared to the mandibular body (Fig. 4). The angular process, visible in MSF 92.1, has a thin, elongated and dorsally arched hook morphology. The condyle is slightly shorter mesiodistally than the angular process (Fig. 4). The masseteric fossa is marked and deep and almost reached the distal side of m2. Its ventral margin is sharp, and the insertion of the masseteric muscle is evident (e.g., in MSF 92.1) (Fig.

ID	Side	c L	c W	p3 L	p3 W	p4 L	p4 W	p4 protd L	m1 L	m1 W	trm1 L	tdm1 L	tdm1 W	m2 L	m2 W
DSTUNIFI BRS 1/19	L	5.7	5.0	-	-	-	-	-	-	-	-	-	-	-	-
MSF 407 (BRS 5/158)	R	-	-	9.1	4.1	9.6	4.9	4.1	11.8	5.5	6.5	5.3	5.7	7.5	5.4
MSF 92 (BRS 5/34)	R	-	-	8.6	4.2	9.8	4.6	4.0	11.5	5.6	6.1	5.4	5.7	7.3	5.6
MSF 92.1 (BRS 5/34)	L	-	-	-	-	9.9	4.8	4.0	10.9	5.8	6.4	4.5	5.6	7.4	5.4
MSF 93 (BRS 5/30)	L	5.0	4.5	9.8	4.6	-	-	-	-	-	-	-	-	-	-

ID	Side	MdiastH	Mp4H	Mm1H	Mp3p4B	Mm1B	HPrac	HR	WR
DSTUNIFI BRS 1/19	L	12.2	-	-	-	-	-	-	-
DSTUNIFI BRS 2/5	R	11.3	12.7	14.1	6.0	5.7	-	-	-
DSTUNIFI BRS 5/179	R	-	-	16.1	-	7.2	-	-	20.5
MSF 407 (BRS 5/158)	R		13.5	14.2	6.8	6.8	-	-	-
MSF 92 (BRS 5/34)	R	-	15.1	16.6	6.9	6.6	-	-	-
MSF 92.1 (BRS 5/34)	L	-	14.1	16.7	6.5	7.1	18.7	-	18.6
MSF 93 (BRS 5/30)	L	9.6	14.0	16.5	7.2	6.7	-	-	-
MSF 94 (BRS 19/6)	R	-	-	18.5	-	8.4	19.8	38.6	17.5

Tab. 5 - Measurements (mm) of mandibular fragments of *Plioviverrops faventinus* from Cava Monticino. Abbreviations in Materials and Methods.

4). The mandible corpus is characterised by a marked subangular region, that in some specimens can be fairly high (e.g., DSTUNIFI BRS2/5, MSF 92.1, MSF 94) but milder in other (e.g., MSF 93) (Fig. 4).

The lower canine is smaller and shorter than the upper one, on average (Fig. 5). It has an oval cross-section with a lingual surface less convex than the buccal one. The crown is more curved distally compared to the upper canine. In dorsal view, the crown seems to diverge slightly laterally. The p1 has a single main cusp rather higher than mesiodistally elongated, with no accessory cuspulids (Fig. 5). The p2 is similar to P2, but simpler with no accessory cuspulids (Fig. 5). The p3 is characterised by a short protoconid, two accessory cuspulids, one mesial and another distal to the protoconid (Fig. 5). Moreover, distally there is a cingulid that extends lingually and is marked by a cuspulid-like structure. The p4 is characterised by a peculiar morphology (e.g., MFS 92.1, DSTUNIFI BRS25/ CP3_4) (Fig. 5): the molarisation is markedly advanced as we can recognise a sharp mesial cuspid (a paraconid), a pointed protoconid and a developed distal accessory cuspulid (a hypoconid), as high as the mesial one. Distal to this cuspid, a cuspulid-like cingulid extends lingually from the buccal side, bounding the whole distal margin of p4 and identifying a talonid basin. The lingual end of the cingulid seems enlarged in the shape of a cuspulid. Buccally a basal cingulid bounds the mesial half of p4 (Fig. 5).

The m1 is marked by high and pointed cuspids, especially in unworn specimens (e.g., MSF 427 1 and MSF 427 3) (Fig. 5). In buccal view, the mesiodistal shortening of the m1 and the height of the cuspids are striking: the protoconid and metaconid are the highest cuspids but the height difference with paraconid and entoconid is really reduced (Fig. 4). The m1 of P. faventinus has a well-developed trigonid with the three tips of cusps arranged to form a three-sided trigonid basin, in occlusal view, and are almost of similar size. In occlusal view, the five-pointed cuspids morphology is evident (Fig. 5). The talonid is characterised by entoconid and hypoconid, which are comparable in size at their base but the second is slightly shorter. On the distal margin of the tooth there is an evident hypoconulid. Lingually, the trigonid and talonid basins are open. Buccally, m1 is characterised by a high and sharp cingulid that bounds the buccal side of the trigonid, and in some specimens uninterruptedly as in MSF 427_1. The m2 is characterised

ID	Tooth	Side	L	w	p4 protd L	trm1 L	tdm1 L	tdm1 W
DSTUNIFI BRS 27_1	С	R	5.4	3.9	-	-	-	-
MSF 412 (BRS 5/sn)	С	L	5.7	4.3	-	-	-	-
MSF 423_1 (BRS 5/160)	С	L	7.1	5.0	-	-	-	-
MSF 423_2 (BRS 5/293)	С	R	6.2	4.4	-	-	-	-
MSF 423_3 (BRS 5/62)	С	R	6.0	5.0	-	-	-	-
MSF 423_4 (BRS 5/279)	С	R	5.6	5.0	-	-	-	-
DSTUNIFI BRS 26_1	p2	L	7.9	3.6	-	-	-	-
DSTUNIFI BRS 9/5	p3	R	8.2	4.0	-	-	-	-
MSF 409 (BRS 5/167)	рЗ	R	9.8	4.2	-	-	-	-
DSTUNIFI BRS 25/CP3_4	p4	R	9.0	4.2	3.6	-	-	-
MSF 410 (BRS 5/168)	p4	R	10.5	5.0	5.0	-	-	-
DSTUNIFI BRS 4/5	m1		11.6	5.0	-	7.6	4.0	5.1
DSTUNIFI BRS 5/158	m1	L	11.3	4.9	-	7.5	3.8	5.5
DSTUNIFI BRS 16/6	m1	L	-	5.6	-	-	5.4	5.5
DSTUNIFI BRS 25	m1	L	11.6	5.2	-	8.2	3.4	5.5
DSTUNIFI BRS 27_3	m1	R	11.1	4.7	-	7.6	3.5	4.8
MSF sn (BRS 27_)	m1	L	11.5	5.6	-	7.4	4.1	5.1
MSF 416 (BRS 5/54)	m1	L	11.6	5.2	-	6.5	5.1	5.1
MSF 417_1 (BRS 5/169)	m1	R	11.5	5.3	-	6.4	5.1	5.4
MSF 427_2 (BRS 5/sn)	m1	R	10.6	5.1	-	6.1	4.5	5.2
MSF 427_3 (BRS 5/67)	m1	R	11.3	5.4	-	6.4	4.9	5.5
MSF 427_4 (BRS 5/68)	m1	R	10.1	5.5	-	6.2	3.9	5.5
MSF427_1 (BRS 5/314)	m1	L	10.4	4.8	-	7.0	3.4	4.9
DSTUNIFI BRS 4/10	m2	L	7.5	5.1	-	-	-	-
DSTUNIFI BRS 26_2	m2	L	7.7	5.5	-	-	-	-
DSTUNIFI BRS 27_4	m2	R	6.9	5.0	-	-	-	-
MSF 429_1 (BRS 5/sn)	m2	L	7.5	5.5	-	-	-	-
MSF 429_2 (BRS 5/sn)	m2	R	7.4	5.4	-	-	-	-
MSF 429_3 (BRS 5/170)	m2	R	7.4	5.3	-	-	-	-
MSF 429_4 (BRS 5/286)	m2	R	7.5	5.4	-	-	-	-

 $Tab.\ 6-Measurements\ (mm)\ of\ isolate\ lower\ teeth\ of\ {\it Plioviverrops\ faventinus}\ from\ Cava\ Monticino.\ Abbreviations\ in\ Materials\ and\ Methods.$

by a subrectangular occlusal shape (Fig. 5), marked by three buccal cuspulids (mesial to distal: a small mesial paraconid, large protoconid and hypoconid, and an evident hypoconulid, placed distobuccally) and two large lingual cuspids (the mesial metaconid and the distal entoconid). The latter two are higher than the others, and visible in buccal view, with the metaconid highest of all. In lingual and occlusal views the lingual opening of the m2 talonid basin is clear (Fig. 5).

RESULTS

Morphological comparison

Cranial fragments and upper dentition - Although the cranial specimens of *P. faventinus* consist only of an incomplete and deformed partial skull, it is possible to make some comparisons with the others fossil species, in particular with P. orbignyi (Gaudry, 1862; de Beaumont, 1969; Koufos, 2011; Lazaridis, 2015) of which there are almost complete cranial specimens, and with G. megalotis (Galiano et al., 2022). As for the neurocranium, the samples found (MSF 62) are too fragmented and deformed to identify specific cranial morphologies. In comparison to P. orbignyi, the fragment of palate (MSF 408) is slightly wider proportionally in the rostral portion, as P. orbignyi has a more marked narrowing at the level of P2. The premolar dentition of P. faventinus is stouter, in general terms, than the other fossil species considered (Fig. 6). Moreover, premolars are marked by a considerable degree of molarisation, visible especially on P3 and p4, not present in older taxa (i.e., P. gervaisi and P. gaudryi or G. megalotis). In particular G. megalotis has very narrow and mesiodistally elongated premolars. Nevertheless, such

a molarisation is not so developed neither in taxa coeval of P. faventinus, i.e., P. guerini and P. orbignyi (Fig. 6). On both P2 and P3 there is a cingulum and an accessory cusp in the lingual portion of the teeth. This cusp on P2 is not possessed by any other fossil species. Some fossil species show a lingual expansion on P3, e.g., G. megalotis and Pr. cingulatum (see Schmidt-Kittler, 1976; Galiano et al., 2022), or even a evident lingual cingulum, e.g., P. orbignyi (see de Beaumont, 1969; Lazaridis, 2015) (Fig. 6), none of them show the degree of development nor the cuspule-like morphology of P. faventinus. The P3 of P. faventinus is the widest of the fossil species included in this comparison. The P4 is characterised by greater buccolingual enlargement compared to the other comparative species, which are marked by the reduction of the mesiodistal length of the whole tooth; the enlargement of the paracone and parastyle parallel to reduction of its metastylar blade; height, prominence and cuspule-like lingual cingulum; and the development of the protocone, both in width and length. This morphology of P4 is markedly different especially from *Protictitherium* spp. and G. megalotis which instead have mesiodistally elongated P4, with generally sharp and long blades (Fraile, 2015; Galiano et al., 2022). Moreover, the protocone of these taxa is proportionately less developed than in P. faventinus. An exception is Pr. thessalonikensis which has shorter P4, unlike other Protictitherium (Koufos, 2012b). In comparison with other Plioviverrops, P4 of P. faventinus is shorter mesiodistally compared to P. gervaisi from Vieux-Collonges (de Beaumont & Mein, 1972), P. gaudryi from La Grive-St. Alban (de Beaumont & Mein, 1972), P. guerini from Crevillente 2 (Montoya, 1997), P. orbignyi from Pikermi, Samos and Kryopigi (Koufos, 2011; Lazaridis, 2015) and also P. cf. orbignyi from Calta-1 (Sen & Sarac, 2018), and definitely wider buccolingually (see also Fig. 6). The P4 parastyle in P. faventinus is large at its base, in a way similar to P. guerini and P. cf. orbignyi, more than P. gervaisi but also of P. gaudryi and P. orbignyi (Fig. 6). The P4 protocone of P. faventinus is enlarged and lingually projected, similarly to P. gaudrvi, P. guerini, P. orbignvi, and P. cf. orbignvi although proportionally larger, in occlusal view (Fig. 6). Although in *P. orbignyi*, the protocone is generally more advanced mesially. Plioviverrops gervaisi has a reduced, poorly expanded protocone. In the other fossil taxa, the lingual cingulum is variably developed, from P. gervaisi with almost no cingulum if not distolingually to P. orbignyi in which the cingulum is continuous but less expanded lingually and without cuspule-like features on it (Fig. 6). On the contrary, in P. faventinus the cingulum is enlarged and show evident accessory cuspules on it; some specimens of P. orbignyi possess feeble cuspules on their lingual cingulum but smaller than those of P. faventinus. On the contrary, the specimen from Calta-1 has a large additional cuspule distally to the protocone and a cuspule-like lingual cingulum.

In comparison to *Protictitherium* spp. and *G. megalotis*, the M1 of *P. faventinus* shows a reduction of the mesiobuccal cingulum around the paracone (cf. the lobed and buccally extended condition of e.g., *Pr. gaillardi* from various localities in Koufos, 2012b; *Pr. crassum* from Batallones-1 in Fraile, 2015, 2017); and buccolingual enlargement of the lingual portion of the M1, characterised in *P. faventinus*

of a large-based protocone bounded by a developed shelflike cingulum, unlike Gansuyaena or Protictitherium (whose species seldomly develop this cingulum but way less expanded or prominent, cf. Pr. cingulatum). Furthermore, neither Protictitherium nor Gansuyaena possess the enlarged M1 protocone of P. faventinus, which expands towards the centre of the tooth, shortening the trigon basin. The latter is wide and elongated lingually in *Protictitherium* spp. and *Gansuyaena*. In comparison to other *Plioviverrops* spp., similarities are obviously higher. For instance, the mesiobuccal cingulum tends to be reduced in these taxa, as P. orbignyi from Samos, Pikermi and Kryopigi (de Beaumont, 1969; Koufos, 2011; Lazaridis, 2015) and P. cf. orbignyi from Çalta-1 (Sen & Saraç, 2018) testify to. It should be noted that P. gaudryi from La Grive-St. Alban and P. guerini from Concud (Fig. 6; Alcalá, 1994; Montoya, 1997) possess a developed buccal expansion, more so in comparison to the former species of *Plioviverrops*. The upper molars described by Alcalá (1994) from Vivero de Pinos and ascribed to P. guerini are considerably different from that of the locality of Concud (site where the paratype of De Villalta-Comella & Crusafont-Pairó, 1948 comes from). Particularly the specimens from Vivero de Pinos are considerably elongated buccolingually, mesiodistally short, with a conspicuous mesiobuccal expansion of cingulum and a large trigon basin. All these morphologies resemble the condition of *Protictitherium* species, e.g., *Pr.* gaillardi from various Spanish localities (Robles, 2014 and S. B.-L. unpublished data), or Gansuyaena megalotis from Paşalar (n.b., Schmidt-Kittler, 1976 described these very same specimens as Pr. aff. gaillardi), and contrast with the buccolingually short and mesiodistally enlarged M1 from Concud (see Alcalá, 1994). Considering this uncertainty, we prefer to exclude the specimens from Vivero de Pinos from the hypodigm of P. guerini but retain the record with doubts on it (Tab. 2), since we were not able to study in person the other specimens, upper and lower premolars, attributed to P. guerini by Alcalá (1994). In general terms, the occlusal morphology of M1 of *P. faventinus* has a squared-like buccal margin compared to the rounded or lobed one respectively of P. gaudryi and P. guerini (rounded) and P. orbignyi and P. cf. orbignvi (lobed) (Fig. 6). Other relevant features are the development of the metacone in *P. faventinus*, which is almost as developed as the paracone similar to some specimens of *P. orbignyi* (e.g., from Kyopigi and Pikermi; Koufos, 2011; Lazaridis, 2015), P. guerini from Concud (Alcalá, 1994) and P. cf. orbignyi (see Sen & Sarac, 2018). On the contrary P. gaudryi from La Grive-St. Alban and P. cf. gaudryi from Los Valles de Fuentidueña (Ginsburg et al., 1981) have a smaller metacone compared to the paracone. The M1 protocone of P. gaudryi, P. cf. gaudryi, P. orbignyi and P. cf. orbignyi is somewhat smaller in occlusal view, in comparison to that of P. faventinus, and often placed lingually and with a reduced height. The position of the M1 protocone in such species identifies a proportionally buccolingually longer trigon compared to P. faventinus, but still mesiodistally wider than the condition of Protictitherium spp. and Gansuyaena. Plioviverrops guerini have a buccolingually short M1, with a protocone fairly similar to that of *P. faventinus* although the cingulum surrounding this lingual cusp is less developed, especially

distally. The lingual cingulum bounding the protocone on both mesial and distal side (even uninterruptedly), is a distinctive feature of *P. faventinus* (Fig. 6). Indeed, the extent of development reached in this species is not present in any other, despite its presence in all other *Plioviverrops* spp. (n.b., the M1 of *P. gervaisi* is unknown).

The M2 does not seem to be particularly variable in the comparative sample. We might note a tendency in Protictitherium spp. and G. megalotis to have rounded M2 whereas in Plioviverrops the M2 is more elongated buccolingually and with a squared occlusal shape. There are no evident differences in the morphology of the M2 between Plioviverrops spp., except for, possibly, a lingual cingulum, which is present both mesially and distally in P. faventinus unlike other taxa, in which the lingual cingulum, if present, is limited to the mesial side of the protocone.

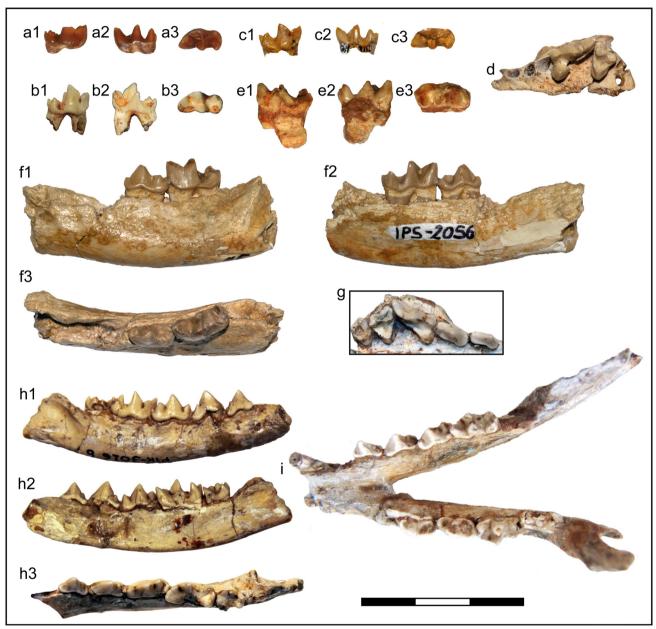


Fig. 6 - (color online) Types, paratype and other material of *Plioviverrops* spp. used as comparison in the analyses. a-b) *Plioviverrops gervaisi* from Vieux-Collonges (France, see Fig. 1 and Tab. 2). a) UCBL FSL 65566 (VxC 113a), right m1, type of *P. gervaisi* (in de Beaumont & Mein, 1972), in buccal (a1), lingual (a2) and occlusal (a3) views. b) UCBL FSL 65565 (VxC 113b), right m1 (figured in de Beaumont & Mein, 1972) in buccal (b1), lingual (b2) and occlusal (b3) views. c-d) *Plioviverrops gaudryi* from La Grive-Saint Alban (France; see Fig. 1 and Tab. 2). c) NMB GA 2113, right m1 (figured in de Beaumont & Mein, 1972) in buccal (c1), lingual (c2) and occlusal (c3) views. d) MdC LGr.1360, left maxillary fragment with P4-M1, type of *P. gaudryi* (in de Beaumont & Mein, 1972), in occlusal view. e-f) *Plioviverrops guerini* from France and Spain (see Fig. 1 and Tab. 2). e) UCBL FSL 295052, left m1 from Les Mistrales III (France) in buccal (e1), lingual (e2) and occlusal (e3) views. f) IPS2056, left hemimandible with m1-m2 from Los Mansuetos (figured in Crusafont-Pairó & Petter, 1969; see Fig. 1 and Tab. 2) in buccal (f1), lingual (f2) and occlusal (f3) view. g-i) *Plioviverrops orbignyi* from Pikermi (Greece; see Fig. 1 and Tab. 2). g-h) MNHN-F-PIK3016, detailed occlusal view (g) of the right upper P2-M2 (figured in, e.g., Koufos, 2009), and right hemimandible (h) with p2-m2 in buccal (h1), lingual (h2) and occlusal (h3) views. i) MNHN-F-PIK3022, mandibles with left p3-m1 and right c, p2-m1 from the type of *P. orbignyi* (in Gaudry & Lartet, 1856 and figured in Gaudry, 1867) in occlusal view. Scale bar equals 3 cm.

MANDIBLE AND LOWER DENTITION - The corpus of *P*. faventinus is distinguished from that of Protictitherium spp. (e.g., Pr. crassum or Pr. gaillardi from Spain; see Fraile, 2015) and G. megalotis from Gansu for the development of a more or less marked bending in the subangular region, giving a peculiar salient lateral shape to its mandible. Generally, the mandibular corpus of P. orbignyi from Pikermi and Kryopigi (Koufos, 2011; Lazaridis, 2015) (Fig. 6) do not show this lateral morphology, but some specimens from Perivolaki (e.g., PER-1; see Koufos, 2006) do possess a curvature of the ventral margin of the corpus and of the subangular region of comparable morphology to that observed in P. faventinus. Thus, it is possible that this feature is variable (even at a low degree) in the Greek-Balkan species. The mandibular specimens of P. guerini currently known, i.e., from Los Mansuetos (IPS2056; Fig. 6f) and Concud (De Villalta-Comella & Crusafont-Pairó, 1948), are broken rostrally to the subangular region, making impossible to compare the region with that of *P. faventinus*. The species from Cava Monticino shows a variability in number and position of the mental foramina, much like P. orbignyi from Kryopigi (see Lazaridis, 2015) or P. guerini from Los Mansuetos and Concud (De Villalta-Comella & Crusafont-Pairó, 1948) (Fig. 6). Whereas Gansuyaena seems to have only one mental foramen, the description is on a single specimen. Unlike *Protictitherium* spp. (e.g., Pr. crassum or Pr. gaillardi from Spain; see Fraile, 2015), G. megalotis from Gansu and P. orbignyi from Kryopigi, Perivolaki and Pikermi (Koufos, 2006, 2011; Lazaridis, 2015), P. faventinus has a more vertical coronoid process and a markedly deeper masseteric fossa compared to that of P. orbignyi. The same can be said for G. megalotis, whose masseteric fossa seems weaker than in *P. faventinus*. Like in the upper teeth, the lower cheek teeth of P. faventinus are characterised by shorter mesiodistal length and proportionately increased buccolingual width, especially in p2-p3, and for their molarisation. This is more evident in comparison to *Protictitherium* spp., e.g., Pr. intermedium and Pr. cingulatum from Turkey (Mayda et al., 2015) or Pr. gaillardi from La Grive-St. Alban. But this is also true for *P. orbignyi* (e.g., from Kryopigi; Lazaridis, 2015) and for *P. guerini* (e.g., from Concud; De Villalta-Comella & Crusafont-Pairó, 1948), in which p2 and p3 are more slender (Fig. 6). The two species share with *P. faventinus* the presence of a small mesial accessory cuspulid on p3 and a distal cingulid bounding p3 from the buccal to the lingual side. The distal accessory cuspulid on p3 is present in some specimens of P. orbignyi from Kryopigi, Perivolaki and Pikermi (Koufos, 2006, 2011; Lazaridis, 2015), but apparently missing in *P. guerini* (Fig. 6). Yet neither P. orbignyi nor P. guerini seem to possess a distolingual accessory cuspulid on p3, which is evident in P. faventinus. In terms of cuspulids, p4 of P. faventinus differs from those of *Protictitherium* spp. (e.g., *Pr. crassum* from Batallones-1; Fraile, 2015, or Pr. gaillardi from La Grive-St. Alban) and of G. megalotis from Gansu and Pașalar (Schmidt-Kittler, 1976; Galiano et al., 2022) for the relative size of the mesial cuspulid, the presence of a distolingual cuspulid and the marked buccal cingulid bounding p4. Plioviverrops orbignyi have a molarised p4 with distolingual cuspulid but with a slender p4, unlike the shortened and stout morphology of *P. faventinus* (Fig.

6). The degree of development of the accessory cuspulids in P. guerini is most similar to that in P. faventinus, but the two distal accessory cusps are shorter in buccal view and the mesial cuspulid is much slender and buccolingually narrower in occlusal view (Fig. 6). The morphology of the m1 trigonid cuspids of P. faventinus contrasts greatly with the condition of *Protictitherium* spp. (see e.g., *Pr.* cingulatum and Pr. intermedium in Schmidt-Kittler, 1976 and Mayda et al., 2015; Pr. crassum in Fraile, 2015; Pr. gaillardi and Pr. thessalonikensis in Koufos, 2012b) and G. megalotis (see Schmidt-Kittler, 1976; Galiano et al., 2022), in which the paraconid and the protoconid are the largest cuspids of the trigonid, and the metaconid is evidently smaller in comparison with the former. Moreover, these hyaenids differ from *P. faventinus* for the mesiodistally elongated m1, the slender and long talonid, and for the arrangement of the cuspids (Fig. 6). If observed in buccal and lingual view, the unworn paraconid, protoconid and metaconid tips of P. faventinus are located at the same height. In *Protictitherium* spp. and G. megalotis the protoconid is higher than the other trigonid cuspids (see among others, Schmidt-Kittler, 1976; Koufos, 2012b; Mayda et al., 2015; Galiano et al., 2022). Similarly, on the talonid of P. faventinus, the hypoconid is slightly lower than the entoconid, although similar at their base. The arrangement of the talonid cuspids in *Protictitherium* spp. and G. megalotis is different with the hypoconid shallow or reduced in comparison to the entoconid (see among others, Schmidt-Kittler, 1976; Koufos, 2012b; Mayda et al., 2015; Galiano et al., 2022). The lower carnassial of P. gervaisi from Vieux-Collonges (de Beaumont & Mein, 1972) (Fig. 6) has a slender trigonid, like *Protictitherium* spp., but with the talonid almost as wide as the trigonid. Moreover, the m1 metaconid of P. gervaisi is much smaller compared to the paraconid and protoconid, as evident in occlusal view; lastly, P. gervaisi shows an evident difference in height between the paraconid and protoconid, in buccal view (Fig. 6). The trigonid cuspids of *P. gaudryi* from La Grive-St. Alban are more similar in their sizes but their arrangement differs from those of P. faventinus. Particularly, P. gaudryi possesses a well-developed and long blade of the paraconid that projects mesially, unlike *P. faventinus* (Fig. 6). Plioviverrops guerini shows placement of the trigonid cuspids comparable to that of *P. faventinus*, although its metaconid is smaller and the paraconid is more elongated mesiodistally, similarly to P. gaudryi (Fig. 6). The most similar morphology to *P. faventinus* of trigonid cuspids is that of *P. orbignyi*, although in the latter the paraconid is yet slightly longer than the protoconid and metaconid (in some specimens e.g., from Kryopigi; Lazaridis, 2015) in comparison to P. faventinus (Fig. 6). The talonid of P. faventinus has the same width of the trigonid, a condition comparable to that of P. guerini and P. orbignyi but not of P. gaudryi and P. gervaisi, and it is proportionately shortened buccolingually compared to other Plioviverrops (cf. the distal elongation of e.g., P. orbignyi or P. guerini despite its relative width). Also the height of the talonid cuspids in P. faventinus are unmatched by other Plioviverrops, as even in derived taxa like P. orbignyi from Samos (de Beaumont, 1969) or P. guerini from Concud (De Villalta-Comella & Crusafont-Pairó, 1948) the unworn hypoconid and entoconid never reach the height of the trigonid cuspids (Fig. 6). Distally, a cuspulidlike cingulid and even a hypoconulid are often present in Plioviverrops spp. (from P. gervaisi from Vieux-Collonges; de Beaumont & Mein, 1972, to P. orbignyi from Greece; Koufos, 2011, 2012a), in a way comparable to P. faventinus. The m1 of P. faventinus shows a high and marked buccal cingulid larger than other species of the genus (Fig. 6). The m2 of P. faventinus is almost as buccolingually wide as the m1, unlike Protictitherium spp. (see e.g., Fraile, 2015) or G. megalotis (see Galiano et al., 2022) in which the m2 is elongated distally. Moreover, compared to P. faventinus, these taxa do not possess majority of the accessory cuspulids P. faventinus has. Plioviverrops orbignyi has a smaller m2 compared to the m1, characterised, in occlusal view, by a large-based hypoconid with and evident buccal projection (see Lazaridis, 2015) (Fig. 6). Although this cuspid is enlarged compared to that of *P. faventinus*, it is rather low in buccal view unlike the m2 hypoconid of P. faventinus that is higher and lies in line with the protoconid. Furthermore, the m2 talonid is reduced in comparison to that of P. faventinus, giving the m2 a distal thin occlusal outline. The entoconid of P. orbignyi is stouter and enlarged compared to that of *P. faventinus* (Fig. 6).

Morphometric comparison

The results of the PCA on the P4 are reported in Fig. 7 and SOM 1: Tab. S4. The PC1 accounts for 81.7% of the variability, whereas the PC2 and PC3 for a comparable portion of the total variability (i.e., respectively for the 8.3% and 5.7%). The PC1 is positively loaded by length and width of the upper carnassial, whereas the minimum width of the carnassial blade negatively influences the PC1. This axis is strongly and negatively correlated with body mass (p-value <<1). Along this axis, Protictitherium spp. with available material here reported (i.e., Protictitherium crassum, Pr. gaillardi, Pr. intermedium and Pr. thessalonikensis) occupy the majority of the morphospace, with Pr. crassum with negative values, Pr. intermedium and Pr. thessalonikensis with positive values and Pr. gaillardi with a wide range. Gansuyaena has high positive values of PC1. Along the axis, the basal P. gaudryi, P. gervaisi and the derived P. orbignyi are characterised by positive values of PC1, whereas P. faventinus have low positive values of PC1; P. guerini, unfortunately represented only by two specimens, is located across the center of the axis. The PC2 is positively influenced by the length of the paracone and of the metastylar blade, whereas the minimum width of the carnassial blade has strong negative loading on this axis. There is no correlation with body mass of the PC2 (p-value= 0.524). Along this axis, several species show a wider variability. This is particularly the case of Pr. crassum (Fig. 7), but also other taxa have a board range, e.g., Pr. gaillardi, P. faventinus and P. orbignyi. The only taxa separated along the PC2 are P. gaudryi, P. gervaisi and G. megalotis. Plioviverrops faventinus is the taxon with lowest values of PC2, and its variability in general is all located in the negative part of the PC2. The PC3 is positively influenced by the length of the metastylar blade and the width of the P4 at the carnassial blade, whereas the length of the parastyle negatively influences the PC3. There is no correlation with body mass of the PC3 (p-value

= 0.678). Along this axis (Fig. 7), the taxa are almost all concentrated close to zero. Thus, there is little separation between taxa. Despite this, in the 3D plot we can see a good degree of distinction between species, and especially of *Plioviverrops* ones (Fig. 7 and the interactive plot in SOM 2 and SOM 3).

The results of the PCA on m1 measurements are reported in Fig. 8 and SOM 1: Tab. S5. The PC1 accounts for 75.2% of the variability, whereas the PC2 and PC3 for a comparable portion of the total variability (i.e., respectively for the 12.2% and 10.6%). The PC1 is positively loaded by length and width of the m1, and negatively by the width and length of the talonid. The PC1 is also strongly and positively correlated to body mass (p-value <<1). Regarding Protictitherium we notice an evident segregation of species, especially of Pr. crassum from *Pr. cingulatum* and *Pr. intermedium*. Along this axis it is possible to observe a clear division between *Plioviverrops* species. The most basal species *P. gaudryi* and P. gervaisi and the derived P. orbignyi are characterised by negative values of PC1, whereas P. faventinus and P. guerini mainly have low positive values of PC1. The specimens of G. megalotis are fairly separated from one another along this axis, although in a range of variability of other taxa e.g., Pr. crassum. The PC2 is positively influenced by the length of the trigonid and, to a lesser extent, by the width of the tooth; the length of the talonid and its width have strong negative loadings on this axis. No correlation between PC2 and body mass was retrieved (p-value = 0.333). Along this axis, the segregation of taxa is less evident, as species apparently experience a certain degree of intraspecific variability. This is particularly evident considering Pr. crassum and Pr. gaillardi (Fig. 8). The only taxa separated along the PC2 are the two basal species of *Plioviverrops* (*P. gaudryi* and *P. gervaisi*) and Pr. cingulatum. Plioviverrops faventinus and P. guerini show a degree of variability almost comparable to that of *Pr. crassum.* The PC3 is positively influenced by the width of the talonid and to a lesser extent, by the length of the trigonid, whereas negatively by the length of the talonid. Even in the case of PC3, no correlation between this axis and body mass was retrieved (p-value = 0.203). As in the case of upper teeth, along this axis all taxa are clustered together with no distinction among them. The 3D plot using the first three axes shows better discrimination between species especially regarding *Pr. crassum* and *P. orbignyi*, whose 3D convex hull are separated from any other (Fig. 6 and the interactive plots in SOM 2 and SOM 3). The convex hull of P. guerini intersects that of P. faventinus, despite only a single specimen of P. guerini is close to the tridimensional variability of *P. faventinus* (Fig. 8).

Analysis of ecomorphological parameters

The plot of the ecomorphological indices RPS (relative size of the largest premolar expressed as width of p4 divided by the cubic root of the body mass) and RBL (relative length of the blade of m1 resulted from the ratio between m1 trigonid length and mesiodistal length of m1) on extant herpestids and viverrids and fossil hyaenids is reported in Fig. 9a. We see a partial overlap between the two extant families (dash-lined convex hull for Herpestidae and dot-lined convex hull for Viverridae in Fig. 9), but they differ as to which ecomorphological parameter is the

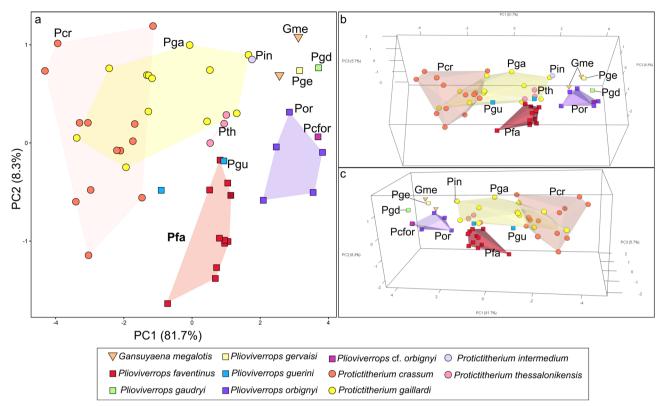


Fig. 7 - (color online) a) Biplot of the two first components of the Principal Components Analysis (PCA) based on the upper carnassial measurements of fossil hyaenids referred to *Gansuyaena*, *Plioviverrops* and *Protictitherium*. b-c) 3D plot of PC1-PC3 showing additional variability (see SOM 2 and SOM 3). Symbols and colors are explained in the legend. Notice the high degree of separation between taxa, especially *Plioviverrops* spp. from *Protictitherium* spp. and *P. faventinus* from *P. orbignyi*. Abbreviations: Gme, *G. megalotis*; Pcr, *Pr. crassum*; Pcfor, *P. cf. orbignyi*; Pfa, *P. faventinus*; Pga, *Pr. gaillardi*; Pgd, *P. gaudryi*; Pge, *P. gervaisi*; Pgu, *P. guerini*; Pin, *Pr. intermedium*; Por, *P. orbignyi*; Pth, *Pr. thessalonikensis*.

most variable. Viverrids show a greater variability in the values of RPS and a lower one in RBL, although there is some degree of difference in RBL especially considering the position of Civettictis civetta. On the contrary, herpestids have very wide range of values of RBL and a smaller range of RPS. Considering fossil taxa, we notice that almost all of them have relatively wide range of RBL and RPS. Among Protictitherium, Pr. crassum have the relative lowest RBL and Pr. intermedium the lowest RPS index, whereas the highest values of both indices are those of Pr. cingulatum from MN7/8 of Turkey. Plioviverrops guerini and G. megalotis are within the variability of other Protictitherium species, and particularly G. megalotis is very close to Pr. intermedium. Indeed, all the three taxa have relatively low RBL (among Protictitherium spp.) and together with Pr. crassum, they fall in the proximity of Genetta cristata and Viverra megaspila. Protictitherium gaillardi and Pr. thessalonikensis have high values of RBL, far from extant species (Fig. 9a). All these species fall in the variability of the extant omnivores (Fig. 9a). Protictitherium cingulatum is separated from all the other extinct taxa both for RBL and RPS and falling well outside any dietary groups (Fig. 9a). The last two species of *Plioviverrops* are well separated from the rest of the extinct species. *Plioviverrops orbignyi* has a rather low RBL value (lower than *Pr. crassum*) but a high RPS value, close to that of *P. faventinus* and lower only to *Pr.* cingulatum (Fig. 9a). Its position is right close to those of Herpestes ichneumon and Urva edwardsii in the area of overlap between extant omnivores and insectivores (Fig. 9a). Lastly, P. faventinus has a high RPS value but an outstandingly low RBL value. These parameters include it in the variability of insectivores (Fig. 9a). Although no living carnivore is close to its position, Pc. selousi is the nearest to P. faventinus (Fig. 9a). The results of the discriminant function analysis are reported in Fig. 9b and SOM 1: Tab. S6. Axis 1 accounts for 74.8% of the variability and is positively influenced by both variables. Axis 2 accounts for a quarter of the variability (25.2%) and is mainly negatively influenced by the RBL. The resulting graph substantially confirms the pattern observed in the biplot (Fig. 9b). The two major groups, i.e., omnivores and insectivores, have some overlap. The extant families share a portion of the morphospace. Regarding the fossil taxa, most of them are included in the variability of extant omnivores. The relative positions of the fossil taxa are also maintained, with G. megalotis, P. guerini, Pr. crassum and Pr. intermedium clustered close together; Pr. gaillardi and Pr. thessalonikensis separated from other extant and fossil taxa but within the omnivore hull. Lastly, *P. orbignyi* lies again close to He. ichneumon and U. edwardsii in the overlapping area of omnivore and insectivore convex hulls. The exceptions in the fossil taxa are Pr. cingulatum, well outside any a priori group, and *P. faventinus* falling in the convex hull of insectivores. The a posteriori prediction matrix (Tab. 7) classifies most of the taxa as omnivores whereas *P. faventinus* is classified as insectivore and *Pr.* cingulatum as frugivore.

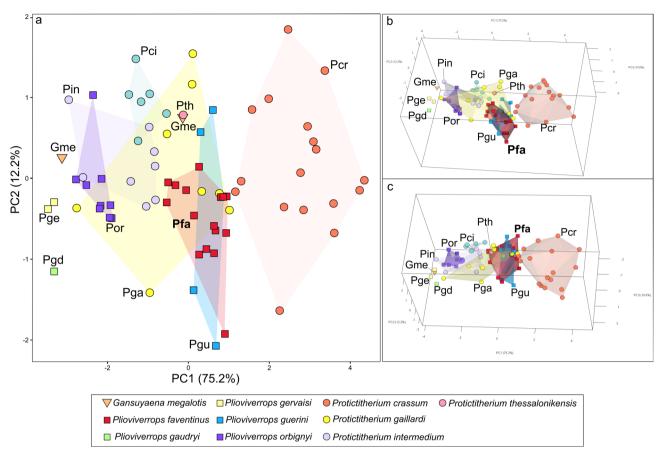


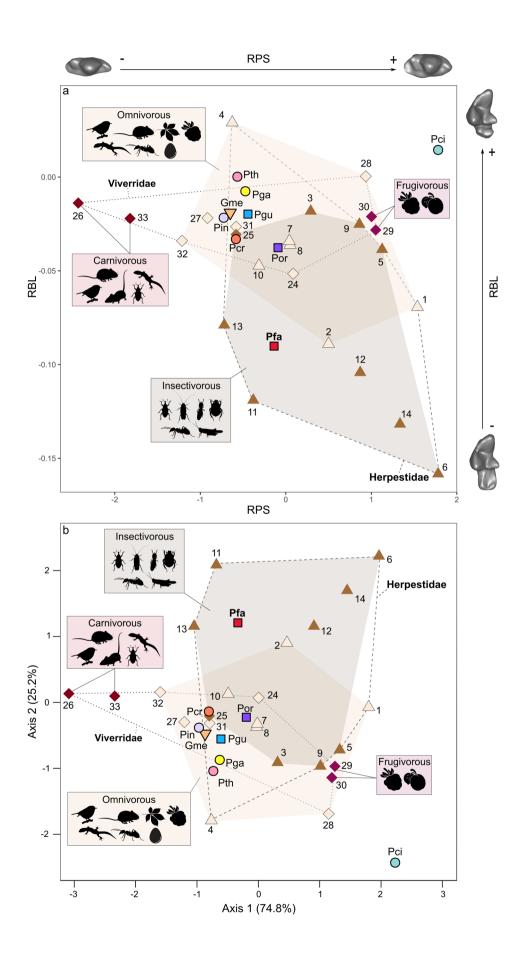
Fig. 8 - (color online) a) Biplot of the two first components of the Principal Components Analysis (PCA) based on the lower carnassial measurements of fossil hyaenids referred to *Gansuyaena*, *Plioviverrops* and *Protictitherium*. b-c) 3D plot of PC1-PC3 showing additional variability (see SOM 2 and SOM 3). Taxa are less separated from one another compared to Fig. 7, although if we consider *Plioviverrops* spp., we see that taxa are well distinguished with the exception of *P. faventinus* and *P. guerini*. Unlike *P. guerini*, whose variability is greatly scattered, specimens identified as *P. faventinus* form a consistent cluster, as evident in panels (b-c). Symbols and colors are explained in the legend. Abbreviations: Gme, *G. megalotis*; Pcr, *Pr. crassum*; Pcfor, *P. cf. orbignyi*; Pfa, *P. faventinus*; Pga, *Pr. gaillardi*; Pgd, *P. gaudryi*; Pge, *P. gervaisi*; Pgu, *P. guerini*; Pin, *Pr. intermedium*; Por, *P. orbignyi*; Pth, *Pr. thessalonikensis*.

DISCUSSION

Plioviverrops faventinus: the last representative of a long-lasting genus

The morphological and morphometric characteristics of P. faventinus clearly distinguish it from the other smallsized hyaenids known in the fossil record, confirming the description made by Torre (1989). The attribution to the genus Plioviverrops proposed by Torre (1989) seems the most parsimonious considering the features possessed by the taxon from Cava Monticino and La Gloria 4. Among these: 1) the enlargement of the subangular region on the mandible; 2) the molarisation of the premolars, especially p4; 3) the mesiodistal shortening of the shearing surface of the P4 trigon and the m1 trigonid; 4) the enlargement of lingual cuspids/cuspulids of the upper and lower molars (e.g., M1 protocone; m1 entoconid). Despite remarking some degree of uncertainty, Turner et al. (2008) stressed the affinity of *P. faventinus* with *Plioviverrops*. It is nonetheless true that some of the features that are normally considered highly diagnostic are missing in the specimens from Cava Monticino, such as the morphologies of the auditory bulla (Hunt, 1991; Hunt & Solounias, 1991; Werdelin & Solounias, 1991; Galiano et al., 2022), as this region is not preserved in any of the

specimens recovered either in Cava Monticino nor in La Gloria 4. Several authors used these features to support the primitiveness of *Plioviverrops* (de Beaumont, 1969; Werdelin & Solounias, 1991), with many similarities to the extant Proteles (de Beaumont, 1969; Hunt, 1987; Hunt & Solounias, 1991; Werdelin & Solounias, 1991) or the fossil Gansuyaena (Galiano et al., 2022) and Protictitherium (Fraile, 2015). Although such similarities might represent symplesiomophies rather than actual valuable phylogenetic features, they have been used (along with others craniodental ones) to link *Plioviverrops* to the Proteles lineage (e.g., Thenius, 1966). However, it should be noted that *Proteles* lacks the alisphenoid canal that all these fossil taxa retain (as evident from de Beaumont, 1969 for Plioviverrops; from Hunt & Solounias, 1991 for Tungurictis; from Fraile, 2015 for Protictitherium, particularly Pr. crassum; and from Galiano et al., 2022 for Gansuyaena). This retention is the exemplification of the primitive state of these fossil taxa (Wozencraft, 1989; Goswami & Friscia, 2010). Although not present in the hypodigm of *P. faventinus*, the morphologies of the auditory bulla are relevant to the discussion on the relation of Plioviverrops and other hyaenids. Moreover, the recent erection of Gansuyaena, with the ascription of P. guerini to this genus and the possible close relationship with Proteles (Galiano et al., 2022), make the issue of Plioviverrops affinities of a certain relevance. According to Galiano et al. (2022), the reattribution of P. guerini to Gansuyaena is apparently relying on "the overall cusp development", "the uncrowded premolar series" and the "weak anterior cusp of p4" (Galiano et al., 2022: p. 104). In this sense we fail to see the distinction of the genus Gansuyaena from both Protictitherium and Plioviverrops, but also, for the same reason, we fear that numerous Protictitherium and/ or Plioviverrops species could potentially be included in "Gansuyaena". The age uncertainty of the Chinese specimens and the geographic distance with the supposed Turkish one (Galiano et al., 2022) (Fig. 1), complicates the interpretation. It is true, that the most reliable diagnostic auditory features of "G." megalotis, i.e., the hypertrophy of the ectotympanic and the bilaminar bullar septum, may be plausibly still interpreted as specific discriminants although cranial specimens with basicranial region preserved are lacking, especially of *Protictitherium* spp. (e.g., Pr. cingulatum; Pr. gaillardi; Pr. intermedium; Pr. thessalonikensis) and Plioviverrops spp. (all apart from P. orbignyi). Thus, both the distinction and the conspecificity are difficult to test. Plioviverrops guerini, thus, remains a peculiar taxon with limited hypocarnivorous adaptations especially in relation to other coeval small-sized hyaenids, as *P. orbignyi* (see Koufos, 2006, 2011; Lazaridis, 2015) (Fig. 6). The ascription to a distinct group might not be too far reached. This fits with the initial proposal by de Beaumont & Mein (1972) of including *P. guerini* in the subgenus Mesoviverrops and was followed by Galiano et al. (2022), who included it in *Gansuyaena*. Despite these reasonable hypotheses, we deem hard at the moment to support the choice of a different generic name among the available taxa, considering the fragmentary nature of reliable specimens attributable to P. guerini, composed almost entirely of dental remains. We share Beaumont & Mein (1972)'s view of a resemblance of P. guerini to P. gaudryi (Fig. 6) but fail to see the remarkable similarities with "G." megalotis in their teeth. At present, we prefer to maintain the generic attribution of *P. guerini* to *Plioviverrops*, bearing in mind its possible different nature. Regarding the species P. faventinus, we can plausibly exclude a relationship with "G." megalotis considering the remarkably different tooth morphology of the former in comparison to the latter (Figs 3-5 in comparison to those in Galiano et al., 2022). The morphometric and morphological comparison with other taxa showed that P. faventinus undoubtedly shares a high number of dentognathic features with other members of Plioviverrops, and particularly with P. gaudryi and P. orbignyi (Fig. 6). We believe that the phylogenetic and


ecological interpretations of previous authors (mainly Werdelin & Solounias, 1996; Werdelin & Turner, 1996; Turner et al., 2008), of a tendency towards hypocarnivory culminating with *P. faventinus*, still finds supports in the morphological and morphometric evidence currently available (see also the following section).

Summing up on the tangle of the most basal genera of hyaenids, their taxonomy and phylogenetic relationships are far from being resolved and will need deep research in the close future. Firstly, it will be necessary to check the validity of some of the current taxa ascribed to *Protictitherium* and test them to exclude possible instances of synonymy with other small-sized hyaenids, chiefly Plioviverrops and/or Tungurictis. This, hopefully, will resolve the long-expressed concern of paraphyly or even polyphyly of these genera, thus clarify the evolutionary scenario of basal hyaenids. Secondly, although we are conscious of the problematic nature of the issue, there is the need of a shared understanding of phylogenetically relevant characters to be used to build robust and supported phylogenetic reconstructions, which will guide the just-mentioned resolution of Hyaenidae affinity. At the same time, the current chronological scenario of these taxa needs also to be substantially improved, particularly with more robust stratigraphic constraints compared to biochronological interpretations. The present work represents a drop in this wide ocean, on a very peculiar and fairly easily defined taxon. We clarified the taxonomic validity and the plausible affinities of *P. faventinus*, reinforcing the ideas expressed by other scholars (Torre, 1989; Turner et al., 2008).

Ecomorphology of early hyaenids and inference on the dietary preferences of Plioviverrops

An established tradition in literature has ecomorphologically regarded *Plioviverrops* spp. as mongoose-like hyaenids (Ecomorph Group 2 of Werdelin & Solounias, 1991, 1996; see also Turner et al., 2008). This definition distinguishes them from Protictitherium spp., considered instead as civet-like hyaenids (Ecomorph Group 1 of Werdelin & Solounias, 1991, 1996). This ecomorphological classification helped picturing the specialisation and the niches occupied by these early hyaenids in Miocene environments (Werdelin & Turner, 1996). In this general view, the phylogenetically primitive *Protictitherium* (at least as normally understood) maintained a generalised carnivore dentognathic morphology, similar to certain extant Viverridae. Conversely, *Plioviverrops* specialised toward hypocarnivory, maybe invertebrivory/insectivory (and even more if considering them in the lineage of extant

Fig. 9 - (color online) a) Morphospace of dietary preferences of extant Herpestidae and Viverridae and extinct small-sized Hyaenidae of the genera *Gansuyaena*, *Plioviverrops* and *Protictitherium* obtained by the relative premolar size (RPS) and relative length of the trigonid blade (RBL). On the top and the right side the 3D of a p4 and of a m1 (respectively) visually show what the two indices express in terms of ecomorphological characteristics of the lower teeth. b) Discriminant function analysis on the same variables and the a priori dietary ecological groups (SOM 1 Tab. S3 for the references) fitting a posteriori the fossil taxa. List of taxa as expressed by numbers: Herpestidae: 1, *Atilax paludinosus*; 2, *Crossarchus obscurus*; 3, *Cynictis penicillata*; 4, *Galerella sanguinea*; 5, *Helogale hirtula*; 6, *Helogale parvula*; 7, *Herpestes ichneumon*; 8, *Urva edwardsii*; 9, *Urva javanica*; 10, *Xenogale naso*; 11, *Ichneumia albicauda*; 12, *Mungos mungo*; 13, *Paracynictis selousi*; 14, *Suricata suricatta*. Viverridae: 24, *Civettictis civetta*; 25, *Genetta cristata*; 26, *Genetta genetta*; 27, *Genetta tigrina*; 28, *Genetta victoriae*; 29; *Paradoxurus hermaphroditus*; 30, *Paradoxurus jerdoni*; 31, *Viverra megaspila*; 32, *Viverra zibetha*; 33, *Viverricula indica*. Abbreviations: Gme, *G. megalotis*; Pcr, *Pr. crassum*; Pcfor, *P. cf. orbignyi*; Pfa, *P. faventinus*; Pga, *Pr. gaillardi*; Pgd, *P. gaudryi*; Pge, *P. gervaisi*; Pgu, *P. guerini*; Pin, *Pr. intermedium*; Por, *P. orbignyi*; Pth, *Pr. thessalonikensis*.

Proteles; as Galiano et al., 2022), and progressively so during the Late Miocene (as suggested by de Beaumont & Mein, 1972 and followed by subsequent authors e.g., Torre, 1989; Werdelin & Solounias, 1991; Turner et al., 2008). Coca-Ortega & Pérez-Clarós (2019) updated this interpretation using dental parameters to fine-tune the ecomorphological interpretation at a specific level, rather than at a generic/grade one. Their results show that some Protictitherium are reconsidered as mongoose-like forms, i.e., Pr. intermedium and Pr. thessalonikensis. Similarly, P. guerini should actually be considered as civet-like taxon, while confirming that P. faventinus and P. orbignyi have dentognathic proportions comparable to the Herpestidae. Our results on lower tooth ecomorphological parameters (Fig. 9) show a significant variability in the extant taxa. This is particularly true in terms of relative length of the carnassial blade for herpestids and relative size of the largest lower premolar for viverrids. Yet it is clear that unlike herpestids, whose variance along the y-axis is great, the majority of Viverridae are clustered in a limited morphospace region (Fig. 9). Regarding fossils, we notice that "G." megalotis from China and Turkey (Galiano et al., 2022), P. guerini from Spain (De Villalta-Comella & Crusafont-Pairó, 1948; Montoya, 1997) and Pr. intermedium from Candir (Schmidt-Kittler, 1976; Mayda et al., 2015) have very similar parameters. Protictitherium crassum from various European localities (Fraile, 2015) share similar RPS values by having a proportionally shorter carnassial blade compared to the latter three taxa. Similarly, although to a lesser extent, Pr. gaillardi and Pr. thessalonikensis have comparable RPS and RBL values with one another. In general terms we can say, following previous authors (Van Valkenburgh, 1989; Van Valkenburgh et al., 2003; Friscia et al., 2007) that the closer in morphospace the extant species are to the studied fossil species, the more probable their similarity as extant ecological analogues. In the case of "G." megalotis, P. guerini and Pr. intermedium the closest taxa are V. megaspila (the Asian large-spotted civet) and Genetta tigrina (the Cape genet), whereas Pr. crassum is close to Genetta victoriae (the giant forest genet). This suggests that these fossil species could have been opportunistic mesocarnivores (Van Rompaey & Colyn, 2013; Jennings & Veron, 2022). Protictitherium gaillardi and Pr. thessalonikensis are within the variability of omnivores but no extant species is close in terms of RBL and RPS indices. Therefore, it is difficult make further dietary inferences. Protictitherium cingulatum from Yeni Eskisihar (Schmidt-Kittler, 1976) is considerably separated from the other

fossil species, but also from extant ones (Fig. 9). It is difficult to suggest a possible ecological affinity with any of the considered living species, although the discriminant analysis suggests a possible affinity with frugivorous taxa (Tab. 7). In our sample, frugivorous species are only represented by the Asian palm civet Paradoxurus hermaphroditus (Bartels, 1964; Su & Sale, 2007; Kwan, 2016; Zaki et al., 2018) and the brown palm civet Pa. jerdoni (Grzimek et al., 2004; Mudappa et al., 2010) so this classification needs further testing. Moreover, without dental wear analyses and study of possible scansorial/arboreal adaptations eventually present in all these early hyaenids (as suggested by some authors, e.g., Semenov, 1989) it is difficult to make further inference on the preferences of this taxon. Despite difficulties, following the previously mentioned ecomorphological classification, our results would suggest classifying these taxa as "civet-like" hyaenids. Plioviverrops orbignyi has the second lowest RBL value, for the proportionate reduction of the trigonid length, and the highest relative size of the premolar of *Plioviverrops* (although slightly more than P. faventinus). This might suggest a diet composed of tougher food items in comparison to the other taxa of the genus. Moreover, it is interesting to notice that *P. orbignyi* has RBL and RPS values very close to those of the Egyptian mongoose He. ichneumon and the Indian grey mongoose *U. edwardsii*. Both these taxa are opportunistic mesocarnivorous taxa but with a great variety of meat, invertebrates and plant food items in the diet (Palomares, 2013; Hussain & Mahmood, 2016). Thus, the classification of P. orbignyi as an omnivore taxon does not seems too farfetched. Additionally, the ecomorphological similarity is not in sharp contrast with the morphological dentognathic features of these taxa (see e.g., Rasouli & Yousefi, 2023). It is moreover interesting to note the distinction between the coeval P. guerini and P. orbignyi (see Fig. 1), with the first one plausibly more carnivorous (and "civet-like" as noticed above) whereas the latter more of an opportunist with varied diet (and "mongoose-like"). Plioviverrops faventinus is the most peculiar taxon here analysed, and this peculiarity is also reflected in ecomorphological parameters. The reduction of the trigonid characterised the reduction of RBL value but also of the premolar size itself considering its fairly large body mass (comparable to P. guerini and more than double of P. orbignyi), locate P. faventinus in an area of the morphospace predominantly occupied by herpestids, confirming the "mongoose-like" interpretation (Werdelin & Solounias, 1996), and particularly in the range of

		Fossil Species											
		"G." megalotis	P. faventinus	P. guerini	P. orbignyi	Pr. cingulatum	Pr. crassum	Pr. gaillardi	Pr. intermedium	Pr. thessalonikensis			
	CARN	0	0	0	0	0	0	0	0	0			
icte	FRU	0	0	0	0	1	0	0	0	0			
red	OMNI	1	0	1	1	0	1	1	1	1			
Д	INSE	0	1	Λ	0	0	0	Ω	0	Ο			

Tab. 7 - Predicted attribution of the fossil taxa to the a priori defined ecological groups in the discriminate function analysis of Fig. 9. Abbreviations: CARN, carnivores; FRU, frugivores; INSE, insectivores; OMNI, omnivores. Groups defined in Materials and Methods.

variance of insectivores (Fig. 9, Tab. 7). What was its diet composition like? As for other fossil taxa, there is no extant taxon which is easily relatable to P. faventinus: the only species closer to the Messinian taxon is the extant Selous's mongoose Pc. selousi (Fig. 9), although the former has proportionally shorter trigonid and more robust premolar. This small-sized herpestid is principally invertebrivorous, and particularly insectivorous, with seldom income of small-vertebrate meat (Smithers, 1971; Smithers & Wilson, 1979; Stuart & Stuart, 2013). This ecomorphological closeness between P. faventinus and Pc. selousi might be confirmation of the long-hypothesised shift of the species of *Plioviverrops* towards hypocarnivory (etymologically) and invertebrivory. The values of RBL and RPS of P. faventinus (and its dentognathic morphology) seem to confirm this hypothesis. New analysis, especially of its dental wear, could indeed help support or correct this interpretation.

CONCLUDING REMARKS

The taxonomic and systematic status of the genus Plioviverrops continues to remain problematic after nearly a hundred years of research. The scarce and scattered record, the difficulty in the interpretation of possible diagnostic characters and the complex relationship with other Miocene hyaenids and carnivorans hinder the general understanding of the old and long-ranged genus (Turner et al., 2008). We reported in Tab. 1 a summary of the hypotheses proposed in literature in order to understand the evolution of ideas on this group of hyaenids and, hopefully help clarifying its systematics. At least five taxa have generally been associated with this genus, spanning from the Early-Middle Miocene to the Pliocene (Fig. 1 and Tab. 2). The taxonomic status of some of these remains debated, e.g., P. guerini that was referred to "P. (Mesoviverrops)" or to "Gansuyaena". Although plausible, a distinct generic attribution for this taxon is at present difficult to confirm. Other species of *Plioviverrops* are far more characterised thanks to their relatively more abundant record, e.g., P. orbignyi from the Late Miocene of the Greek-Balkan area is the most renowned species of the genus. Within this picture, P. faventinus is a key taxon in the evolutionary scenarios of the small-sized hyaenids. It represents one of the last (if not the last) of this group of hyaenid that arose in Eurasia. Apart from its outstanding record in the type locality (here redescribed after the work of Torre, 1989), dated around 5.4 Ma, the only other certain occurrence of the taxon is that of the Spanish La Gloria 4, reported by Alcalá (1994).

Plioviverrops faventinus is also easily distinguished by other Plioviverrops for its diagnostic dentognathic features, like the high and angulate mandible corpus, sharp and pointed cusps/cuspids and reduced carnassial blades. These special dentognathic features indicate hypocarnivorous/invertebrivorous adaptations unlike any other known taxon of Plioviverrops or Protictitherium. They are comparable to those of some extant herpestids. This fits with the previous ecomorphological interpretations (e.g., Werdelin & Solounias, 1991; Coca-Ortega & Pérez-Clarós, 2019) regarding the group and, particularly, P. faventinus as a "mongoose-like" hyaenid. Considering

their record, from the earliest forms of the MN4-MN5 (i.e., P. gervaisi and P. gaudryi) to P. faventinus, and through P. orbignyi, the interpretation of de Beaumont & Mein (1972) of a tendency towards the hypocarnivory in the lineage remains justified. Less clear are the relationships of Plioviverrops with other hyaenids and particularly with Proteles. The fossil record of this African hyaenid is known only from the Early Pleistocene (Turner, 1997; Werdelin & Peigné, 2010), about 2 Ma after the last occurrence of Plioviverrops, and these occurrences already showed the peculiar dentognathic features that typify the aardwolf (Werdelin & Solounias, 1991). Historically, in literature, a relationship between Plioviverrops and Proteles has been proposed on the basis of the small-size and the hypocarnivorous/insectivorous adaptations (Thenius, 1966; Werdelin & Solounias, 1991). Similar but alterative hypotheses have been suggested, e.g., the affinity with "Gansuyaena" (Galiano et al., 2022), although none of them can be excluded nor confirmed, even using molecular evidence (Eizirik et al., 2010; Westbury et al., 2019; Hassanin et al., 2021). The phylogenetic issues of Plioviverrops remains open. Among them, P. faventinus has been often overlooked in scientific literature, possibly for the limited publications centered on it. The present paper offers a new overview on the craniodental features of this hyaenid after the pioneering work of Danilo Torre (Torre, 1989), updating and clarifying its morphometric and morphological features and, for the first time, its ecomorphology.

SUPPLEMENTARY ONLINE MATERIAL

Supplementary data generated and analysed in this contribution are available on the BSPI website at: https://www.paleoitalia.it/bollettino-spi/bspi-vol-641/

ACKNOWLEDGEMENTS

The authors are thankful to: O. Cirilli and D. Fidalgo for the pictures of the cranium of P. orbignyi from Samos held in the collection of Museum für Naturkunde Berlin (Cirilli's stay was supported by the SYNTHESYS+ project http://www.synthesys.info/ which is financed by European Community Research Infrastructure Action under the H2020 Integrating Activities Programme, Project number 823827); to M.J. Salesa and G. Siliceo (Museo Nacional de Ciencias Naturales, Madrid) for the pictures of P. orbignyi from the collection of Muséum national d'Histoire naturelle of Paris (under the curatorship of C. Argot); to G. Koufos for the photos of P. orbignyi specimens from Pikermi, Pr. crassum from Dityko, and Pr. thessalonikensis from Greece. The authors are also thankful to the curators that granted access to the collections at their institutions, particularly M. Sami and E. Bagnaresi of the Museo Civico di Storia Naturale Malmerendi (Faenza) for their friendship and enthusiastic support provided us on everything surrounding the palaeofauna of Monticino; L. Costeur of the Basel Naturhistorisches Museum for his usual kindness and availability in our stays in Basel; D. Berthet of the Musée des Confluences (Lyon) and E. Robert of the Université Claude Bernard (Lyon), who welcomed us and provided relevant info on the French localities; D.M. Alba and J. Robles of the Institut Catalá de Paleontologia (Cerdanyola del Vallès), for the access to the specimens held in the collections of Sabadell and Bellaterra. SBL thanks CERCA Programme/Generalitat de Catalunya. The authors thanks M.J. Salesa and M. Lewis for their revisions and comments on the first draft of the manuscript helping improving it greatly.

REFERENCES

- Adler D., Nenadí O. & Zucchini W. (2003). Rgl: A r-library for 3D visualization with opengl. https://cran.r-project.org/web/packages/rgl/rgl.pdf (accessed 01.09.2024).
- Agnarsson I., Kuntner M. & May-Collado L.J. (2010). Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. *Molecular Phylogenetics and Evolution*, 54: 726-745.
- Alcalá L. (1994). Macromamíferos Neógenos de la Fosa de Alfambra-Teruel. 554 pp. Instituto de Estudios Turolenses y Museo Nacional de Ciencias Naturales, Teruel.
- Artec3D (2024). Artec3D softwares. https://www.artec3d.com/ (accessed 01.09.2024).
- Bartels E. (1964). On *Paradoxurus hermaphroditus javanicus* (Horsfield, 1824). The common palm civet or Tody Cat in western Java. Notes on its food and feeding habits. Its ecological importance for wood and rural biotopes. *Beaufortia*, 124: 193-201.
- Bartolini-Lucenti S. & Rook L. (2021). "Canis" ferox revisited: diet ecomorphology of some song gone (Late Miocene and Pliocene) fossil dogs. Journal of Mammalian Evolution, 28: 285-306.
- Bartolini-Lucenti S., Madurell-Malapeira J. & Rook L. (2022). The carnivorans from Cava Monticino (Faenza, Italy; Messinian) revisited. *Historical Biology*, 34: 1458-1470.
- Bernor R.L. & Sen S. (2017). The Early Pliocene *Plesiohipparion* and *Proboscidipparion* (Equidae, Hipparionini) from Çalta, Turkey (Ruscinian Age, c. 4.0 Ma). *Geodiversitas*, 39: 285-314.
- Blandford W.T. (1885). Exhibition and description of a skull of an apparently new species of *Paradoxurus (Paradoxurus jerdoni)*. *Proceedings of Zoological Society, London*, 1885: 612-613.
- Bowdich E.T. (1821). An analysis of the natural classifications of Mammalia, for the use of students and travellers. 115 pp. J. Smith, Paris.
- Coca-Ortega C. (2019). Ecomorfología y evolución de la dentición en la familia Hyaenidae 350 pp. Ph.D. Thesis, Universidad de Málaga, Malaga.
- Coca-Ortega C. & Pérez-Clarós J.A. (2019). Characterizing ecomorphological patterns in hyenids: A multivariate approach using postcanine dentition. *PeerJ*, 6: e6238.
- Crusafont-Pairó M. & Petter G. (1969). Contribution a l'étude des Hyaenidae la sous-famille de Ictitheriinae. *Annales de Paleontologie*, 5: 89-127.
- Crusafont-Pairó M. & Truyols-Santonja J. (1956). A biometric study of the evolution of fissiped carnivores. *Evolution*, 10: 314-332.
- Cuvier G. (1825). Le mangue. *In* Geoffroy Saint-Hilaire E. & Cuvier G.F. (eds), Histoire naturelle des mammifères: avec des figures originales, coloriées, dessinées d'après des animaux vivans. Troisieme Partie, Volume 5. Belin, Paris: 1-3.
- Cuvier G. (1829). Le règne animal distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée. Tome I. Nouvelle édition revue et augmentée. 584 pp. Déterville, Paris.
- de Beaumont G. (1967). Observations sur les Herpestinae (Viverridae, Carnivora) de l'Oligocène supérieur avec quelques remarques sur des Hyaenidae du Néogène. *Archives des Sciences*, 20: 79-107.
- de Beaumont G. (1969). Brèves remarques sur *Plioviverrops* Kretzoi (Carnivora). *Bulletin de la Société Vaudoise des Sciences Naturelles*, 70: 247-253.
- de Beaumont G. & Mein P. (1972). Recherches sur le genre Plioviverrops Kretzoi (Carnivora, ?Hyaenidae). Archives des Sciences, 25: 383-393.
- de Blainville H.-M.D. (1841). Ostéographie des carnassiers, précédée de considerations sur l'histoire de la science à leur égard, les principes de leur classification, leur distribution géographique actuelle, et suivie de recherches sur leur ancienneté à la surface de la Terre. Ostéographie ou description iconographique comparée du squelette et du système dentaire des Mammifères recents et fossiles pour servir de base à la Zoologie et la Géologie. 1000 pp. Baillière et Fils, Paris.

- de Bonis L. (1973). Contribution à l'étude des mammifères de l'Aquitanien de l'Agenais, Rongeurs, Carnivores, Périssodactyles. Mémoires du Muséum national d'Histoire naturelle, Séries C, Sciences de la Terre, 28: 1-192.
- de Bonis L. (1994). Carnivores viverroïdes (Carnivora, Mammalia) du Miocène inférieur d'Europe Occidentale: origine des familles modernes de Feliformia. *Bulletin de la Société Géologique de France*, 165: 85-92.
- de Bonis L. & Koufos G.D. (1991). Les petits carnivores du Miocène supérieur de la basse vallée de l'Axios (Macédoine-Grèce). *Geobios*, 24: 361-379.
- de Bruijn H., Daams R., Daxner-Höck G., Fahlbusch V., Ginsburg L., Mein P. & Morales J. (1992). Report of the RCMNS Working Group on fossil mammals, Reisenburg 1990. *Newsletters on Stratigraphy*, 26: 65-118.
- Dehm R. (1950). Die Raubtoere aus dem Mittel-Miocän (Burdigalium) von Wintershof-West bei Eichstätt in Bayern. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Neue Folge, 58: 1-141.
- De Villalta-Comella J.F. & Crusafont-Pairó M. (1948). Nuevas aportaciones al conocimiento de los carnívoros pontienses del Vallés-Penedés. *Miscelánea Almera*, 1: 81-121.
- de Winton W.E. (1896). On a new mongoose from Matabeleland, British South Africa. *The Annals and Magazine of Natural History; zoology, botany, and geology, serie* 6, 18: 469-470.
- de Winton W.E. (1901). Description of a new mongoose from. West Africa. *Bulletin of the Liverpool Museum*, 3: 35-37.
- Depéret C. (1892). La faune de mammifères miocènes de la Grive-Saint-Alban (Isère) et de quelques autres localités du bassin du Rhône. Documents nouveaux et révision générale. *Archives du Muséum d'Histoire naturelle de Lyon*, 5: 1-93.
- Dietrich W.O. (1927). Über einen Schädel von *Ictitherium* (Fam. Viverridae). *Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abteilung B*, 57: 364-371.
- Eizirik E., Murphy W.J., Koepfli K.-P., Johnson W.E., Dragoo J.W., Wayne R.K. & O'Brien S.J. (2010). Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. *Molecular Phylogenetics and Evolution*, 56: 49-63.
- Erxleben J.C.P. (1777). Systema Regni Animalis per Classes, Ordines, Genera, Species, varietates cvm synonymia et historia animalivm. Classis I. Mammalia. 752 pp. Weigand, Lipsia.
- Ferretti M.P. (2007). Evolution of bone-cracking adaptations in hyaenids (Mammalia, Carnivora). Swiss Journal of Geosciences, 100: 41-52.
- Forsyth Major C.I. (1903). New Carnivora from the Middle Miocene of La Grive Saint-Alban, Isère, France. *Geological Magazine*, 10: 534-538.
- Fraile S. (2015). Estudio de *Protictitherium crassum* del Cerro de los Batallones (Torrejón de Velasco, Madrid): aportación a la filogenia y evolución de la familia Hyaenidae. 382 pp. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid.
- Fraile S. (2017). *Protictiherium crassum*, la pequeña hiena de 9 millones de años del Cerro de los Batallones. *In* Morales J. & Baquedano Pérez E. (eds), La colina de los Tigres Dientes de Sable: los yacimientos miocenos del Cerro de los Batallones (Torrejón de Velasco, Comunidad de Madrid). Comunidad de Madrid, Publicaciones Oficiales, Madrid: 219-234.
- Friscia A.R., Van Valkenburgh B. & Biknevicius A.R. (2007). An ecomorphological analysis of extant small carnivorans. *Journal* of *Zoology*, 272: 82-100.
- Galiano H., Tseng J.Z., Solounias N., Wang X.-M., Zhan-Xiang Q. & White S.C. (2022). A new aardwolf-line fossil hyena from Middle and Late Miocene deposits of Linxia Basin, Gansu, China. Vertebrata PalAsiatica, 60: 81-116.
- Gaubert P. & Cordeiro-Estrela P. (2006). Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: Implications for faunal

- exchanges between Asia and Africa. *Molecular Phylogenetics* and Evolution, 41: 266-278.
- Gaudry A. (1862). Animaux fossiles et Géologie de l'Attique. 474 pp. Savy, Paris.
- Gaudry A. & Lartet E. (1856). Résultats des recherches paléontologiques entreprises dans Unique sous les auspices de l'Académie. Comptes Rendus hebdomadaires des séances de l'Académie des Sciences, 43: 271-274.
- Geoffroy Saint-Hilaire É. (1803). Catalogue des Mammifères du Museum national d'Histoire naturelle. 272 pp. Museum national d'Histoire naturelle, Paris.
- Geoffroy Saint-Hilaire É. (1813). Description des mammifères qui se trouvent en Égypte. *In* Blondeau A., Fourier J.B.J., Jacotin P., Jollois J.B.P., Jomard E.-F., Monge G., Napoleon, Tresca S. & Villoteau G.A. (eds), Description de l'Égypte, ou, Recueil des observations et des recherches qui ont été faites en Égypte pendant l'expédition de l'Armée Française. Tome II. Histoire Naturelle. Imprimerie impériale, Paris: 9-144.
- Ginsburg L., Morales J. & Soria D. (1981). Nuevos datos sobre los carnívoros de Los Valles de Fuentidueña (Segovia). Estudios Geologicos, 37: 383-415.
- Gmelin J.F. (1788) (ed). Linneaus C., Systema Naturae per Regna Tria Naturae Secundum Classes, Ordines, Genera, Species, cum characteribus, differentiis, synonymis, locis. Editio Decima Tertia, aucta, reformata. 500 pp. Beer, Lipsia.
- Goldman C.A. (1984). Systematic revision of the African mongoose genus Crossarchus (Mammalia: Viverridae). Canadian Journal of Zoology, 62: 1618-1630.
- Golpe-Posse J. (1974). Faunas de yacimientos con Suiformes en el Terciario Español. *Paleontologia i Evolució*, 8: 1-87.
- Goswami A. & Friscia A.R. (2010). Carnivoran evolution: new views on phylogeny, form, and function. 492 pp. Cambridge University Press, Cambridge.
- Granger D.E., Gibbon R.J., Kuman K., Clarke R.J., Bruxelles L. & Caffee M.W. (2015). New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature, 522: 85-88.
- Gray J. (1821). On the natural arrangement of vertebrose animals. The London Medical Repository, 15: 296-310.
- Gray J. (1837). Description of some new or little known Mammalia, principally in the British Museum collection. *Magazine of Natural History, New Series*, 1: 577-587.
- Grzimek B., Schlager N. & Olendorf D. (2004). Grzimek's animal life encyclopedia, 2nd edition. 569 pp. Thompson Gale, Detroit.
- Hassanin A., Veron G., Ropiquet A., Jansen Van Vuuren B., Lécu A., Goodman S.M., Haider J. & Nguyen T.T. (2021). Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. *PLoS One*, 16: e0240770.
- Hilgen F.J., Lourens L.J. & Van Dam J.A. (2012). The Neogene Period. *In* Gradstein F., Ogg J.G., Schmitz M. & Ogg G. (eds), Geologic Time Scale 2012. Elsevier, Amsterdam: 923-978.
- Hunt R.M. (1987). Evolution of the Aeluroid Carnivora: Significance of auditory structure in the Nimravid cat *Dinictis*. *American Museum Novitates*, 2886: 1-74.
- Hunt R.M. (1991). Evolution of the aeluroid Carnivora: Viverrid affinities of the Miocene carnivoran *Herpestides*. *American Museum Novitates*, 3023: 1-34.
- Hunt R.M. & Solounias N. (1991). Evolution of the aeluroid Carnivora: hyaenid affinities of the Miocene carnivoran *Tungurictis spocki* from Inner Mongolia. *American Museum Novitates*, 3030: 1-25.
- Hussain R. & Mahmood T. (2016). Comparative ecology of two sympatric mongoose species (*Herpestes javanicus* and *H.* edwardsii) in Pothwar Plateau, Pakistan. Pakistan Journal of Zoology, 48: 1931-1946.
- Jennings A. & Veron G. (2022). Ecology and conservation of Southeast Asian civets (Viverridae) and mongooses (Herpestidae). *In* Do Linh San E., Sato J.J., Belant J.L. & Somers M.J. (eds), Small Carnivores: Evolution, Ecology, Behaviour, and Conservation. Wiley-Blackwell, Hoboken: 393-427.

- Kargopoulos N., Kampouridis P., Lechner T. & Böhme M. (2021).
 A review of *Semigenetta* (Viverridae, Carnivora) from the Miocene of Eurasia based on material from the hominid locality of Hammerschmiede (Germany). *Geobios*, 69: 25-36.
- Kaya T., Geraads D. & Tuna V. (2003). A new Middle Miocene mammalian fauna from Mordoğan (Western Turkey). Palaeontologische Zeitschrift, 77: 293-302.
- Koepfli K.-P., Jenks S.M., Eizirik E., Zahirpour T., Valkenburgh B.V. & Wayne R.K. (2006). Molecular systematics of the Hyaenidae: Relationships of a relictual lineage resolved by a molecular supermatrix. *Molecular Phylogenetics and Evolution*, 38: 603-620.
- Koufos G.D. (2000). Revision of the late Miocene carnivores from the Axios valley, Macedonia, Greece. *Münchner Geowissenschaftliche*, *Abhandlungen A*, 39: 51-92.
- Koufos G. (2006). The late Miocene vertebrate locality of Perivolaki, Thessaly, Greece. Palaeontographica, Abteilung A, 276: 39-74.
- Koufos G.D. (2009). The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection 5. Carnivora. Beitrage Paläontologie, 31: 189-205.
- Koufos G.D. (2011). The Miocene carnivore assemblage of Greece. Estudios Geológicos, 67: 291-320.
- Koufos G.D. (2012a). New material of Carnivora (Mammalia) from the Late Miocene of Axios Valley, Macedonia, Greece. *Comptes Rendus Palevol*, 11: 49-64.
- Koufos G.D. (2012b). A new protictithere from the late Miocene hominoid locality Ravin de la Pluie of Axios Valley (Macedonia, Greece). *Palaontologische Zeitschrift*, 86: 219-229.
- Koufos G.D., Kostopoulos D.S. & Vlachou T.D. (2009). The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection 16. Biochronology. *Beiträge* zur Paläontologie, 31: 397-408.
- Kretzoi M. (1938). Die Raubtiere von Gombaszög nebst einer Übersicht der Gesamtfauna. Annales Musei Nationalis Hungarici, Pars Mineralogica, Geologica, Palaeontologica, 31: 88-157.
- Kwan F.T. (2016). Feeding ecology and seed dispersal of the common palm civet *Paradoxurus hermaphroditus* (Pallas, 1777) (Mammalia: Carnivora: Viverridae) in Pulau Ubin, Singapore.
 205 pp. MSc Thesis. National University of Singapore, Singapore.
- Landry Z., Kim S., Trayler R.B., Gilbert M., Zazula G., Southon J. & Fraser D. (2021). Dietary reconstruction and evidence of prey shifting in Pleistocene and recent gray wolves (*Canis lupus*) from Yukon Territory. *Palaeogeography, Palaeoclimatology*, *Palaeoecology*, 571: 110368.
- Lazaridis G. (2015). Study of the late Miocene vertebrate locality of Kryopigi and other localities of Kassandra Peninsula, Chalkidiki (Greece). Systematics, taphonomy, paleoecology, biochronology. 351 pp. Ph.D. Thesis, Aristotle University Thessaloniki, Thessaloniki.
- Legendre S. & Roth C. (1988). Correlation of carnassial tooth size and body weight in recent carnivores (mammalia). *Historical Biology*, 1: 85-98.
- Linnaeus C. (1758). Systema Naturae per Regna Tria Naturae secundum Classes, Ordines, Genera, Species, cum characteribus, cifferentiis, synonymis, locis. Tomus I. Editio Decima. 823 pp. Laurentii Salvii, Holmiae.
- Marabini S. & Vai G.-B. (1989). Geology of the Monticino Quarry, Brisighella, Italy. Stratigraphic implications of its late Messinian mammal fauna. *Bollettino della Società Paleontologica Italiana*, 28: 369-382.
- Mayda S., Koufos G.D., Kaya T. & Gul A. (2015). New carnivore material from the Middle Miocene of Turkey. Implications on biochronology and palaeoecology. *Geobios*, 48: 9-23.
- Mein P. (1958). Les mammifères de la faune sidérolithique de Vieux-Collonges. *Nouvelles archives du Muséum d'histoire naturelle de Lyon*, 5: 3-122.
- Mein P. (1999). European Miocene mammal biochronology. *In* Rössner G.E. & Heissig K. (eds), The Miocene: Land Mammals of Europe. Verlag Dr Friedrich Pfeil, München: 25-38.

- Montoya P. (1994). Los macromamíferos del Mioceno superior del área de Crevillente (Alicante). 507 pp. Ph.D. Thesis, Universitat de València, València.
- Montoya P. (1997). Los hiénidos (Carnivora, Mammalia) del Mioceno Superior (Turoliense inferior) de Crevillente 2 (provincia de Alicante, España). Revista Española de Paleontología, 12: 265-273.
- Mudappa D., Kumar A. & Chellam R. (2010). Diet and fruit choice of the Brown Palm Civet *Paradoxurus jerdoni*, a Viverrid endemic to the Western Ghats rainforest, India. *Tropical Conservation Science*, 3: 282-300.
- Nowak R.M. (2005). Walker's carnivores of the World. 313 pp. The John Hopkins University Press, Baltimore.
- Pallas P.S. (1777). Das Smitterftintthier. *In* Schreber J.C.D. (ed.), Die Säugthiere in abbildungen nach der Natur mit Beschreibungen. Dritter Teil. Walther, Erlangen: 426.
- Palomares F. (2013). *Herpestes ichneumon*: Egyptian mongoose (*Ichenumon*). *In* Kingdon J. & Hoffmann M. (eds), Mammals of Africa. Volume V: Carnivores, Pangolins, Equids, Rhinoceroses. Bloomsbury, London: 306-310.
- Pérez-Clarós J.A. & Coca-Ortega C. (2020). Canines and carnassials as indicators of sociality in durophagous hyaenids: analyzing the past to understand the present. *PeerJ*, 8: e10541.
- Peters W. (1852). Naturwissenschaftliche Reise nach Mossambique: auf Befehl seiner Majestät des Königs Friedrich Wilhelm IV in den Jahren 1842 bis 1848 ausgeführt. Zoologie I Säugentiere. 206 pp. Reimer, Berlin.
- Petter G. (1976). Etude d'un nouvel ensemble de petits carnivores du Miocène d'Espagne. Géologie Méditerranéenne, 3: 135-154.
- Piñero P., Agustí J., Oms O., Fierro I., Montoya P., Mansino S., Ruiz-Sánchez F., Alba D.M., Alberdi M.T., Blain H.A., Laplana C., Van der Made J., Mazo A.V., Morales J., Murelaga X., Pérez-García A., Pérez-Valera F., Pérez-Valera J.A., Sevilla P., Soria J.M. & Romero G. (2017). Early Pliocene continental vertebrate fauna at Puerto de la Cadena (SE Spain) and its bearing on the marine-continental correlation of the Late Neogene of Eastern Betics. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 479: 102-114.
- Pucheran J. (1855). Notes mammalogiques. Revue et Magasin de Zoologie, série 2, 7: 392-394.
- R Core Team (2024). R: A language and environment for statistical computing. 3864 pp. R Foundation for Statistical Computing, Vienna.
- Rasouli B. & Yousefi M.H. (2023). Skull, mandible and hyoid apparatus in the Indian grey mongoose (*Herpestes edwardsii*): A comprehensive anatomical study. *Anatomia, Histologia, Embryologia*, 52: 373-380.
- Ripley B., Venables B., Bates D.M., Hornik K., Gebhardt A., Firth D. & Ripley M.B. (2013). Package 'mass.' CRAN R, 538: 113-120.
- Robles J.M. (2014). Miocene Carnivorans from the Valles-Penedes Basin (NE Iberian Peninsula). 438 pp. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona.
- RStudio Team (2024). RStudio: Integrated Development Environment for R. RStudio PBC. Boston. http://www.rstudio. com/
- Rüppell E. (1835). Neue Wirbelthiere zu der Fauna von Abyssinien gehörig. 148 pp. Schmerber, Frankfurt am Main.
- Salesa M.J., Pesquero M.D., Siliceo G., Antón M., Alcalá L. & Morales J. (2012). A rich community of Felidae (Mammalia, Carnivora) from the late Miocene (Turolian, MN 13) site of Las Casiones (Villalba Baja, Teruel, Spain). *Journal of Vertebrate Paleontology*, 32: 658-676.
- Schmidt-Kittler N.T. (1976). Raubtiere aus dem Jungtertiär Kleinasiens. Carnivores from the Neogene of Asia Minor. *Palaeontographica, Abteilung A*, 155: 1-131.
- Schneider C.A., Rasband W.S. & Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. *Nature Methods*, 9: 671-675.

- Schreber J.C.D. (1776). Die Säugthiere in Abbildungen nach der Natur mit Beschreibungen. 350 pp. Walther, Erlangen.
- Semenov Y. (1989). Ictitheres and morphologically similar hyaenas from the Neogene of the USSR. 180 pp. Naukova Dumka, Kiev [In Russian with English summary].
- Semenov Y. (2008). Taxonomical reappraisal of "ictitheres" (Mammalia, Carnivora) from the Late Miocene of Kenya. *Comptes Rendus Palevol*, 7: 529-539.
- Sen S. & Saraç G. (2018). Hyaenidae (Carnivora, Mammalia) from late Miocene and Pliocene of Çalta (Ankara, Turkey). *Revue de Paleobiologie*, 37: 561-575.
- Smithers R.H.N. (1971). The mammals of Botswana. *Museum Memoirs, National Museums of Southern Rhodesia*, 4: 1-340.
- Smithers R.H.N. & Wilson V.J. (1979). Check list and atlas of the mammals of Zimbabwe Rhodesia. 147 pp. Trustees of the National Museums and Monuments. Salisbury.
- Sotnikova M. & Rook L. (2010). Dispersal of the Canini (Mammalia, Canidae: Caninae) across Eurasia during the Late Miocene to Early Pleistocene. *Quaternary International*, 212: 86-97.
- Sparrman A.E. (1783). Resa till Goda Hopps-udden, Södra polkretsen och omkring Jordklotet, samt till Hottentott- och Caffer-landen åren 1772-1776. 766 pp. Nordstroem, Stockholm.
- Spassov N., Tzankov T. & Geraads D. (2006). Late Neogene stratigraphy, biochronology, faunal diversity and environments of South-West Bulgaria (Struma River Valley). *Geodiversitas*, 28: 477-498.
- Spassov N., Geraads D., Hristova L. & Markov G.N. (2019). The late Miocene mammal fauna from Gorna Sushitsa, southwestern Bulgaria, and the early/middle Turolian transition. *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen*, 291: 317-350.
- Steininger F.F. (1999). Chronostratigraphy, geochronology and biochronology of the Miocene "European Land Mammal Mega-Zones" (ELMMZ) and the Miocene "Mammal-Zones" (MN-Zones). *In* Rössner G.E. & Heissig K. (eds), The Miocene: Land Mammals of Europe. Verlag Dr Friedrich Pfeil, München: 9-24.
- Stuart C. & Stuart T. (2013). Paracynictis selousi Selous's mongoose. In Kingdon J. & Hoffmann M. (eds), Mammals of Africa. Volume V: Carnivores, Pangolins, Equids, Rhinoceroses. Bloomsbury, London: 339-341.
- Su S. & Sale J. (2007). Niche differentiation between common palm civet *Paradoxurus hermaphroditus* and small Indian civet *Viverricula indica* in regenerating degraded forest, Myanmar. *Small Carnivore Conservation*, 36: 30-34.
- Sundevall C.J. (1846). Nya Mammalia från Sydafrika. Öfversigt af Kongliga Vetenskaps-akademiens forhandlingar, 3: 118-123.
- Tarquini S.D., Chemisquy M.A. & Prevosti F.J. (2020). Evolution of the carnassial in living mammalian carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): diet, phylogeny, and allometry. *Journal of Mammalian Evolution*, 27: 95-109.
- Thenius E. (1966). Zur Stammesgeschichte der Hyänen (Carnivora, Mammalia). Zeitschrift für Säugetierkunde, 31: 293-300.
- Thomas O. (1901). On the more notable mammals obtained by Sir Harry Johnston in the Uganda protectorate. *Proceedings of Zoological Society, London*, 1901: 85-89.
- Thomas O. (1904). On a collection of mammals obtained in Somaliland by Major H.N. Dunn, R.A.M.C., with descriptions of allied species from other localities. *Annals and Magazine of Natural History*, *Séries* 5, 14: 94-105.
- Thomas O. (1910). Further new African mammals. *Annals and Magazine of Natural History*, *Séries 8*, 5: 191-202.
- Thomas O. & Wroughton B.C. (1907). New mammals from Lake Chad and the Congo, mostly from the collections made during the Alexander-Gosling expedition. *Annals and Magazine of Natural History, Séries* 7, 19: 370-387.
- Torre D. (1989). *Plioviverrops faventinus* n. sp., a new carnivore of the late Messian age. *Bollettino della Società Paleontologica Italiana*, 28: 323-327.

- Trouessart E.-L. (1897). Catalogus Mammaliaum lam Vivientum quam Fossilium. 664 pp. Friedlander & Sohn, Berlin.
- Tseng Z.J. & Wang X. (2011). Do convergent ecomorphs evolve through convergent morphological pathways? Cranial shape evolution in fossil hyaenids and borophagine canids (Carnivora, Mammalia). *Paleobiology*, 37: 470-489.
- Turner A. (1997). Further remains of Carnivora (Mammalia) from the Sterkfontein hominid site. *Palaeontologia Africana*, 34: 115-126
- Turner A., Antón M. & Werdelin L. (2008). Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. *Geobios*, 41: 677-687.
- Vai G.B. (1989). A field trip to the Romagna Apennine geology. The Lamone valley. *Bollettino della Società Paleontologica Italiana*, 28: 343-367.
- Van Dam J.A., Alcalá L., Zarza A.A., Calvo J.P., Garcés M. & Krijgsman W. (2001). The upper Miocene mammal record from the Teruel-Alfambra region (Spain). The MN system and continental stage/age concepts discussed. *Journal of Vertebrate Paleontology*, 21: 367-385.
- Van Rompaey H. & Colyn M. (2013). *Genetta victoriae*: giant genet. *In* Kingdon J. & Hoffmann M. (eds), Mammals of Africa. Bloomsbury, London: 249-250.
- Van Valkenburgh B. (1989). Carnivore dental adaptations and diet: A study of trophic diversity within guilds. *In* Gittleman J.L. (ed.), Carnivore behavior, ecology and evolution. Springer, Boston: 410-436.
- Van Valkenburgh B. (1990). Skeletal and dental predictors of body mass in carnivores. *In* Dartmuth J. & MacFadden B.J. (eds), Body size in mammalian Paleobiology. Estimation and biological implication. Cambridge University Press, Cambridge: 181-228.
- Van Valkenburgh B., Sacco T. & Wang X. (2003). Pack hunting in Miocene borophagine dogs: evidence from craniodental morphology and body size. Bulletin of the American Museum of Natural History, 279: 147-162.
- Viret J. (1951). Catalogue critique de la faune des mammifères miocènes de la Grive Saint-Alban (Isère). Première partie: chiroptères, carnivores, édentés, pholidotes. Nouvelle Archives du Musèum d'Histoire naturelle de Lyon, 3: 3-102.
- von den Driesch A. (1976). A guide to the measurement of animal bones from archaeological sites. *Peabody Museum Bulletin*, 1: 1-170.
- Wagner A. (1839). Ueber die verwandschafts-erhaltnisse der pharaonsratte. Gelehrte Anzeigen der Koniglichen Bayerischen Akademie der Wissenschaften München, 9: 425-429.
- Wagner A. (1848). Urweltliche Säugthier-Ueberreste aus Griechenland. Abhandlungen der Bayerischen Akademie der Wissenschaften, 5: 335-378.

- Wang X., Tedford R.H. & Antón M. (2008). Dogs: their fossil relatives and evolutionary history. 219 pp. Columbia University Press, New York.
- Wang X., Tseng Z.J., Wu W., Ye J., Meng J. & Bi S. (2020). A new species of *Tungurictis* Colbert, 1939 (Carnivora, Hyaenidae) from the middle Miocene of Junggar Basin, northwestern China and the early divergence of basal hyaenids in East Asia. *Geodiversitas*, 42: 29-45.
- Werdelin L. & Peigné S. (2010). Carnivora. *In* Werdelin L. & Sanders W. (eds), Cenozoic mammals of Africa. University of California Press, Berkeley: 609-633.
- Werdelin L. & Solounias N. (1991). The Hyaenidae: Taxonomy, systematics and evolution. *Fossils and Strata*, 30: 1-104.
- Werdelin L. & Solounias N. (1996). The evolutionary history of Hyaenas in Europe and Western Asia during the Miocene. *In* Bernor R.L., Fahlbusch V. & Rietschel S. (eds), Later Neogene European biotic evolution and stratigraphic correlation. Columbia University Press, New York: 290-306.
- Werdelin L. & Turner A. (1996). Turnover in the guild of larger carnivores in Eurasia across the Miocene-Pliocene boundary. *Acta Zoologica Cracoviensia*, 39: 585-592.
- Westbury M.V., Cahsan B.D., Dalerum F., Norén K. & Hofreiter M. (2019). Aardwolf population diversity and phylogenetic positioning inferred using complete mitochondrial genomes. *African Journal of Wildlife Research*, 49.
- Wickham H., Chang W. & Wickham M.H. (2016). Package 'ggplot2'. Create elegant data visualisations using the grammar of graphics. *Version*, 2: 1-189.
- Wozencraft W.F. (1989). The phylogeny of the recent Carnivora. *In* Gittleman J.L. (ed.), Carnivore behavior, ecology and evolution. Springer, Boston: 495-535.
- Zaki Z., Azis T.F., Rahim S. & Mohamad S. (2018). Preliminary study on food preferences of common palm civet (*Paradoxurus* hermaphroditus) in captivity. In Saian R. & Abbas M.A. (eds), Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017. Volume 2. Springer, Singapore: 687-693.
- Zhou Y., Wang S.-R. & Ma J.-Z. (2017). Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA. *PLoS One*, 12: e0174902.

Manuscript submitted 17 June 2024 Revised manuscript accepted 19 February 2025 Published online 9 May 2025 Editor Marco Cherin